从零搭建Prometheus监控报警系统
参考文章:从零搭建Prometheus监控报警系统
一.安装Prometheus Server
具体参考《基于docker搭建Prometheus+Grafana监控报警系统》中Prometheus的安装。
二.安装客户端提供metrics接口
1.通过golang客户端提供metrics
mkdir -p /home/chenqionghe/promethues/client/golang/src
cd !$
export GOPATH=/home/chenqionghe/promethues/client/golang/
#克隆项目
git clone https://github.com/prometheus/client_golang.git
#安装需要翻墙的第三方包
mkdir -p $GOPATH/src/golang.org/x/
cd !$
git clone https://github.com/golang/net.git
git clone https://github.com/golang/sys.git
git clone https://github.com/golang/tools.git
#安装必要软件包
go get -u -v github.com/prometheus/client_golang/prometheus
#编译
cd $GOPATH/src/client_golang/examples/random
go build -o random main.go
运行3个示例metrics接口
./random -listen-address=:8080 &
./random -listen-address=:8081 &
./random -listen-address=:8082 &
2.通过node exporter提供metrics
docker run -d \
--name=node-exporter \
-p 9100:9100 \
prom/node-exporter
然后把这两些接口再次配置到prometheus.yml, 重新载入配置curl -X POST http://localhost:9090/-/reload
global:
scrape_interval: 15s # 默认抓取间隔, 15秒向目标抓取一次数据。
external_labels:
monitor: 'codelab-monitor'
rule_files:
#- 'prometheus.rules'
# 这里表示抓取对象的配置
scrape_configs:
#这个配置是表示在这个配置内的时间序例,每一条都会自动添加上这个{job_name:"prometheus"}的标签 - job_name: 'prometheus'
- job_name: 'prometheus'
scrape_interval: 5s # 重写了全局抓取间隔时间,由15秒重写成5秒
static_configs:
- targets: ['localhost:9090']
- targets: ['http://10.211.55.25:8080', 'http://10.211.55.25:8081','http://10.211.55.25:8082']
labels:
group: 'client-golang'
- targets: ['http://10.211.55.25:9100']
labels:
group: 'client-node-exporter'
可以看到接口都生效了
prometheus还提供了各种exporter工具,感兴趣小伙伴可以去研究一下
三.安装pushgateway
pushgateway是为了允许临时作业和批处理作业向普罗米修斯公开他们的指标。
由于这类作业的存在时间可能不够长, 无法抓取到, 因此它们可以将指标推送到推网关中。
Prometheus采集数据是用的pull也就是拉模型,这从我们刚才设置的5秒参数就能看出来。但是有些数据并不适合采用这样的方式,对这样的数据可以使用Push Gateway服务。
它就相当于一个缓存,当数据采集完成之后,就上传到这里,由Prometheus稍后再pull过来。
我们来试一下,首先启动Push Gateway
使用Pushgateway原因:
- Prometheus采用pull模式,可能由于不在一个子网或防火墙导致无法直接拉取各target数据
- 需要将不同数据汇总后,再由Prometheus统一收集
其缺点:
- pushgateway宕机影响范围会更大。
- prometheus拉取状态up只针对pushgateway,无法做到对每个节点有效。
- pushgateway可以持久化推送给它的所有监控数据
3.1 运行pushgateway
docker run -d \
--name pushgateway
-p 9091:9091 \
prom/pushgateway
# pushgateway默认是不持久化数据的,如果需要,则可以通过启动时加入参数 :
"-persistence.file=push_file"
访问http://10.211.55.25:9091 可以看到pushgateway已经运行起来了
3.2 使用API向Pushgateway推数据
prometheus提供了多种语言的sdk,最简单的方式就是通过shell
- 向pushgateway推送数据:
使用Client SDK
直接使用API
3.2.1 直接使用API进行数据推送:
echo "some_metric 3.14" | curl --data-binary @- http://localhost:9091/metrics/job/some_job
发送更复杂的数据,可以还上instance,表示来源位置:
cat <<EOF | curl --data-binary @- http://localhost:9091/metrics/job/some_job/instance/some_instance
# TYPE some_metric counter
some_metric{label="val1"} 42
# TYPE another_metric gauge
# HELP another_metric Just an example.
another_metric 2398.283
EOF
删除数据:如果某个监控数据不再需要,则只有手动删除才生效,否则仍然采集的为旧值
// 删除某个组下某个实例的所有数据
curl -X DELETE http://localhost:9091/metrics/job/some_job/instance/some_instance
// 删除某个组下的所有数据
curl -X DELETE http://localhost:9091/metrics/job/some_job
推送一个指标
echo “cqh_metric 100” | curl —data-binary @- http://ubuntu-linux:9091/metrics/job/cqh
推送多个指标
cat <<EOF | curl —data-binary @- http://10.211.55.25:9091/metrics/job/cqh/instance/test
锻炼场所价格
muscle_metric{label=”gym”} 8800
三大项数据 kg
bench_press 100
dead_lift 160
deep_squal 160
EOF
然后我们再将pushgateway配置到prometheus.yml里边,重载配置
看到已经可以搜索出刚刚推送的指标了
3.2.3 使用Client SDK向Pushgateway推数据
通过Client SDK推送metric信息到Pushgateway:
1.添加pom依赖:
<dependency>
<groupId>io.prometheus</groupId>
<artifactId>simpleclient_pushgateway</artifactId>
<version>0.6.0</version>
</dependency>
2.添加配置:在Prometheus的配置文件中配置,让其从Pushgateway上进行数据采集,这里0.51.14.23:9091
为我Pushgateway的地址端口。配置完后需要重启使其配置生效
scrape_configs:
- job_name: 'pushgateway'
static_configs:
- targets: ['10.51.14.23:9091']
labels:
instance: "pushgateway"
3.代码:
@Test
public void pushToGateWay() throws Exception {
CollectorRegistry registry = new CollectorRegistry();
Gauge duration = Gauge.build().name("my_batch_job_duration_seconds")
.help("Duration of my batch job in second").register(registry);
Gauge.Timer durationTimer = duration.startTimer();
try {
Gauge lastSuccess = Gauge.build().name("my_batch_job_last_success")
.help("Last time my batch job successed, in unixtime")
.register(registry);
lastSuccess.setToCurrentTime();
} finally {
durationTimer.setDuration();
PushGateway pg = new PushGateway("localhost:9091");
pg.pushAdd(registry, "my_batch_job");
}
}
四.安装Grafana展示
具体参考《基于docker搭建Prometheus+Grafana监控报警系统》中Grafana的安装。
五.安装AlterManager
Pormetheus的警告由独立的两部分组成。
Prometheus服务中的警告规则发送警告到Alertmanager。
然后这个Alertmanager管理这些警告。包括silencing, inhibition, aggregation,以及通过一些方法发送通知,例如:email,PagerDuty和HipChat。
建立警告和通知的主要步骤:
- 创建和配置Alertmanager
- 启动Prometheus服务时,通过-alertmanager.url标志配置Alermanager地址,以便Prometheus服务能和Alertmanager建立连接。
创建和配置Alertmanager
mkdir -p /home/chenqionghe/promethues/alertmanager
cd !$
创建配置文件alertmanager.yml
global:
resolve_timeout: 5m
route:
group_by: ['cqh']
group_wait: 10s #组报警等待时间
group_interval: 10s #组报警间隔时间
repeat_interval: 1m #重复报警间隔时间
receiver: 'web.hook'
receivers:
- name: 'web.hook'
webhook_configs:
- url: 'http://10.211.55.2:8888/open/test'
inhibit_rules:
- source_match:
severity: 'critical'
target_match:
severity: 'warning'
equal: ['alertname', 'dev', 'instance']
这里配置成了web.hook的方式,当server通知alertmanager会自动调用webhook http://10.211.55.2:8888/open/test
下面运行altermanager
docker rm -f alertmanager
docker run -d -p 9093:9093 \
--name alertmanager \
-v /home/chenqionghe/promethues/alertmanager/alertmanager.yml:/etc/alertmanager/alertmanager.yml \
prom/alertmanager
访问http://10.211.55.25:9093
接下来修改Server端配置报警规则和altermanager地址
修改规则/home/chenqionghe/promethues/server/rules.yml
groups:
- name: cqh
rules:
- alert: cqh测试
expr: dead_lift > 150
for: 1m
labels:
status: warning
annotations:
summary: "{
{$labels.instance}}:硬拉超标!lightweight baby!!!"
description: "{
{$labels.instance}}:硬拉超标!lightweight baby!!!"
这条规则的意思是,硬拉超过150公斤,持续一分钟,就报警通知
然后再修改prometheus添加altermanager配置
global:
scrape_interval: 15s # 默认抓取间隔, 15秒向目标抓取一次数据。
external_labels:
monitor: 'codelab-monitor'
rule_files:
- /etc/prometheus/rules.yml
# 这里表示抓取对象的配置
scrape_configs:
#这个配置是表示在这个配置内的时间序例,每一条都会自动添加上这个{job_name:"prometheus"}的标签 - job_name: 'prometheus'
- job_name: 'prometheus'
scrape_interval: 5s # 重写了全局抓取间隔时间,由15秒重写成5秒
static_configs:
- targets: ['localhost:9090']
- targets: ['10.211.55.25:8080', '10.211.55.25:8081','10.211.55.25:8082']
labels:
group: 'client-golang'
- targets: ['10.211.55.25:9100']
labels:
group: 'client-node-exporter'
- targets: ['10.211.55.25:9091']
labels:
group: 'pushgateway'
alerting:
alertmanagers:
- static_configs:
- targets: ["10.211.55.25:9093"]
重载prometheus配置,规则就已经生效
接下来我们观察grafana中数据的变化
然后我们点击prometheus的Alert模块,会看到已经由绿->黄-红,触发了报警
然后我们再来看看提供的webhook接口,这里的接口我是用的golang写的,接到数据后将body内容报警到钉钉
钉钉收到报警内容如下
到这里,从零开始搭建Prometheus实现自动监控报警就说介绍完了,一条龙服务,自动抓取接口+自动报警+优雅的图表展示!
还没有评论,来说两句吧...