发表评论取消回复
相关阅读
相关 信息熵、相对熵(KL散度)和交叉熵
[https://blog.csdn.net/weixin\_37688445/article/details/104113465][https_blog.csdn.net_w
相关 深入理解机器学习中的信息熵、KL散度、交叉熵
通用的说,熵(Entropy)被用于描述一个系统中的不确定性(the uncertainty of a system)。在不同领域熵有不同的解释,比如热力学的定义和信息论也不大
相关 机器学习 | 算法模型 —— 算法训练:损失函数之交叉熵(熵/相对熵/KL散度/sigmoid/softmax)
目录 1.信息论 1.1.信息量 1.2.熵 1.3.KL散度(相对熵) 1.4.交叉熵 2.交叉熵的类型 2.1.多分类交叉熵 2.2.二分类交叉熵 3
相关 交叉熵损失函数
一、香农熵 香农熵 1948 年,香农提出了“ [信息熵][Link 1]”(shāng) 的概念,才解决了对信息的量化度量问题。 一条
相关 相对熵(KL散度)
今天开始来讲相对熵,我们知道信息熵反应了一个系统的有序化程度,一个系统越是有序,那么它的信息熵就越低,反 之就越高。下面是熵的定义 如果一个随机变量![0720063
相关 KL散度(Kullback-Leibler_divergence)(相对熵)
转载自[http://blog.csdn.net/chdhust/article/details/8506260][http_blog.csdn.net_chdhust_art
相关 交叉熵损失函数
1. Cross entropy 交叉熵损失函数用于二分类损失函数的计算,其公式为: ![573274-20190728165253168-15289458.png][]
相关 交叉熵损失函数
> 监督学习的两大种类是分类问题和回归问题。 > > 交叉熵损失函数主要应用于分类问题。 > 先上实现代码,这个函数的功能就是计算labels和logits之间的交叉熵。
相关 详解机器学习中的熵、联合熵、条件熵、相对熵和交叉熵
原文地址:[https://www.cnblogs.com/kyrieng/p/8694705.html][https_www.cnblogs.com_kyrieng_p_8
还没有评论,来说两句吧...