发表评论取消回复
相关阅读
相关 mysql数据倾斜,Oracle通过BIND_AWARE+SQL PATCH解决SQL绑定变量中数据倾斜的问题
以下测试: DB Version:Oracle 11.2.0.4 OS:CentOS 6.6 测试工具:pl/sql developer 1.建立测试表和数据 \--
相关 Hive数据倾斜问题
[Skew Join与Left Semi Join相关][Skew Join_Left Semi Join] Skew Join 真实数据中数据倾斜是一定的,
相关 oracle 优化之按图索骥:SQL中数据倾斜问题
数据倾斜即表中某个字段的值分布不均匀,比如有100万条记录,其中字段A中有90万都是相同的值。这种情况下,字段A作为过滤条件时,可能会引起一些性能问题。 本文通过
相关 spark 数据倾斜解决方案
1. 数据倾斜的原理 在执行shuffle操作的时候,按照key,来进行values的数据的输出、拉取、和聚合的, 同一个key的values,一定是分配到一个reduce
相关 Hive数据倾斜解决办法
[http://www.mamicode.com/info-detail-500353.html][http_www.mamicode.com_info-detail-5003
相关 Spark数据倾斜解决方案
数据倾斜的原因: 在数据中存在一个或少数数量key对应的数据量特别大,导致在spark处理task进行shuffle的时候,大部分task都很快的执行
相关 Flink 数据倾斜 解决方法
1.数据倾斜的原理和影响 1.1 原理 数据倾斜就是数据的分布严重不均,造成一部分数据很多,一部分数据很少的局面。数据分布理论上都是倾斜的,符合“二八原理”:例如8
相关 MapReduce解决数据倾斜
可以从一下三个方面入手: 一、业务逻辑方面 1、map端的key值进行hash的时候,可能得到的hash值相同,然而相同的hash值会分配给同一个reduce函数去处理,因
还没有评论,来说两句吧...