pandas DataFrame常用总结
以pandas读取csv文件为例:
DataFrame数据取用
import pandas
df = pandas.read_csv(‘suites.csv’,sep=’,’) 读取csv文件,以,分隔
print(df)Status ... Description
0 passed … \n 用例描述:期权强平市价委托\n
1 passed … \n 用例描述:期权强平市价委托\n
2 passed … \n 用例描述:期权强平市价委托\n
3 passed … \n 用例描述:期权强平市价委托\n
4 passed … \n 用例描述:期权强平市价委托\n
5 passed … \n 用例描述:期权强平市价委托\n
6 passed … \n 用例描述:期权强平市价委托\n
7 passed … NaN
8 passed … \n 用例描述:期权强平市价委托\n
9 passed … NaN
10 passed … \n 用例描述:期权强平市价委托\n
11 passed … \n 用例描述:期权强平市价委托\n
12 passed … \n 用例描述:期权强平市价委托\n
13 passed … \n 用例描述:期权强平市价委托\n
14 passed … \n 用例描述:期权强平市价委托\n
15 passed … \n 用例描述:期权强平市价委托\n
16 passed … \n 用例描述:期权强平市价委托\n
17 passed … \n 用例描述:期权强平市价委托\n
18 passed … \n 用例描述:期权强平市价委托\n
19 passed … NaN
20 passed … NaN
21 passed … \n 用例描述:期权强平市价委托\n[22 rows x 11 columns]
print(df.head()) #打印前五行
Status … Description
0 passed … \n 用例描述:期权强平市价委托\n
1 passed … \n 用例描述:期权强平市价委托\n
2 passed … \n 用例描述:期权强平市价委托\n
3 passed … \n 用例描述:期权强平市价委托\n
4 passed … \n 用例描述:期权强平市价委托\n[5 rows x 11 columns]
print(df[:3]) #打印前三行
print(len(df.index)) #获取文件行数
print(df.columns) #获取文件表头
Index([‘Status’, ‘Start Time’, ‘Stop Time’, ‘Duration in ms’, ‘Parent Suite’,'Suite', 'Sub Suite', 'Test Class', 'Test Method', 'Name',
'Description'],
dtype='object')
print(df.loc[0,’Status’]) #获取Status列第0行
print(df[‘Stop Time’]) #打印Stop Time列0 Mon Jul 01 20:22:29 CST 2019
1 Mon Jul 01 20:22:25 CST 2019
2 Mon Jul 01 20:22:25 CST 2019
3 Mon Jul 01 20:22:31 CST 2019
4 Mon Jul 01 20:22:25 CST 2019
5 Mon Jul 01 20:22:25 CST 2019
6 Mon Jul 01 20:22:31 CST 2019
7 Mon Jul 01 20:22:33 CST 2019
8 Mon Jul 01 20:22:31 CST 2019
9 Mon Jul 01 20:22:31 CST 2019
10 Mon Jul 01 20:22:25 CST 2019
11 Mon Jul 01 20:22:31 CST 2019
12 Mon Jul 01 20:22:25 CST 2019
13 Mon Jul 01 20:22:25 CST 2019
14 Mon Jul 01 20:22:25 CST 2019
15 Mon Jul 01 20:22:31 CST 2019
16 Mon Jul 01 20:22:31 CST 2019
17 Mon Jul 01 20:22:31 CST 2019
18 Mon Jul 01 20:22:25 CST 2019
19 Mon Jul 01 20:22:25 CST 2019
20 Mon Jul 01 20:22:25 CST 2019
21 Mon Jul 01 20:22:31 CST 2019
Name: Stop Time, dtype: object
df_compare = df.compare(df2, align_axis=1) #对比两个dataframe
数据取交集、差集
df_insertaction = df.merge(df2) #取df和df2的交集
df_app = df.append(df_insertaction)
df_app.drop_dupicates(keep=False) #取df与df_insertaction的差集dataframe列
‘A’ in df.columns #’A’是否属于df的列
还没有评论,来说两句吧...