发表评论取消回复
相关阅读
相关 论文阅读笔记:MuTual: A Dataset for Multi-Turn Dialogue Reasoning
提示:阅读论文时进行相关思想、结构、优缺点,内容进行提炼和记录,论文和相关引用会标明出处。 文章目录 前言 介绍 数据集 实验结果 总结
相关 【论文阅读】An End-to-end Model for Entity-level Relation Extraction using Multi-instance Learning
> EACL 2021 > [https://github.com/lavis-nlp/jerex][https_github.com_lavis-nlp_jerex]
相关 【论文阅读】A Simple and Effective Model for Answering Multi-span Questions
A Simple and Effective Model for Answering Multi-span Questions > 论文:EMNLP20-A Simple
相关 【论文阅读】Multi-hop Question Answering via Reasoning Chains
Multi-hop Question Answering via Reasoning Chains > [论文:2019-Multi-hop Question Answe
相关 【论文阅读】Dynamically Fused Graph Network for Multi-hop Reasoning
Dynamically Fused Graph Network for Multi-hop Reasoning > [论文:https://arxiv.org/abs/1
相关 【论文阅读】Dynamic Sampling Strategies for Multi-Task Reading Comprehension
Dynamic Sampling Strategies for Multi-Task Reading Comprehension > [论文:https://www.ac
相关 《EfficientNetV2:Smaller Models and Faster Training》论文笔记
参考代码:[EfficientNetV2][] 1. 概述 > 导读:这篇文章是在EfficientNet基础(借鉴了其中一些既有结论)上进行改进优化来的,其主要的优化
相关 【论文阅读】Reinforced Multi-task Approach for Multi-hop Question Generation
Reinforced Multi-task Approach for Multi-hop Question Generation > [论文:https://arxiv.
相关 【论文阅读】 Asking Complex Questions with Multi-hop Answer-focused Reasoning
Asking Complex Questions with Multi-hop Answer-focused Reasoning > 论文:[Asking Complex
相关 【论文阅读】Avoiding Reasoning Shortcuts Adversarial Evaluation, Training, and Model Development for Multi
Avoiding Reasoning Shortcuts Adversarial Evaluation, Training, and Model Development fo
还没有评论,来说两句吧...