发表评论取消回复
相关阅读
相关 【机器学习】特征工程—— 特征预处理
特征工程 定义:将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的预测准确性。 内容:主要有三部分: 1、特征抽取 2、
相关 【机器学习】特征工程 —— 特征抽取
特征工程 定义:将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的预测准确性。 内容:主要有三部分: 1、特征抽取 2、
相关 Spark机器学习API之特征处理
关键字:spark、机器学习、特征处理、特征选择 Spark机器学习库中包含了两种实现方式: 一种是spark.mllib,这种是基础的API,基于RDD
相关 Spark机器学习之特征提取、选择、转换
本节介绍了处理特征的算法,大致分为以下几组: 1、提取:从“原始”数据提取特征 2、转换:缩放,转换或修改要素 3、选择:从一组较大的要素中选择一个子集 4、局
相关 机器学习之特征工程
特征工程是什么?首先我们来说一说特征。特征是数据中抽取出来的对结果预测有用的信息,可以是文本或是数据。特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更
相关 机器学习之离散型特征的处理-one hot encoder
转载自[https://www.cnblogs.com/daguankele/p/6595470.html][https_www.cnblogs.com_daguankele_
相关 【Trick】机器学习特征工程处理(一)
前言 机器学习特征工程处理系列博客为博主学习相关视频教程以及结合平时接触到的特征工程处理方法,总结出的一些处理技巧,本篇博客介绍数据格式化、数据清洗、数据采样等,我在之前
相关 机器学习之特征工程
特征工程 一、简介 特征是指数据中抽取出来的对结果预测有用的信息 特征工程是使用专业背景和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
相关 【Python机器学习】系列之特征提取与处理篇
转载:[http://www.10tiao.com/html/502/201607/2653283084/1.html][http_www.10tiao.com_html_50
相关 机器学习实战——特征工程之特征构建
特征构建是指通过研究原始数据样本,结合机器学习实战经验和相关领域的专业知识,思考问题的潜在形式和数据结构,人工创造出新的特征,而这些特征对于模型训练又是有益的并且具有一定的工程
还没有评论,来说两句吧...