发表评论取消回复
相关阅读
相关 机器学习中的算法(1)-决策树模型组合之随机森林与GBDT
个人认识和总结: 1、随机森林:由多棵树组成,每个树都不是全部的样本训练,使用子集训练,训练完成后选择重复程度最高的作为模型 2、Gradient Boost Decisi
相关 机器学习实战笔记3(决策树与随机森林)
决策树的优势就在于数据形式非常容易理解,而kNN的最大缺点就是无法给出数据的内在含义。 1:简单概念描述 决策树的类型有很多,有CART、ID3和C4.5等,其中CART是
相关 决策树模型组合之随机森林(Random Forest)
本文由LeftNotEasy发布于[http://leftnoteasy.cnblogs.com][http_leftnoteasy.cnblogs.com], 本文可以被全部
相关 决策树与随机森林算法
决策树(分类树)是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。决策树只需要构建一次,每一次预测分类的最大计算次数不超过
相关 机器学习之决策树和随机森林
一、决策树 决策树学习是[机器学习][Link 1]中一类常用的[算法][Link 2]。在决策树中,根节点包含样本全集。每个非叶子节点表示一种对样本的分割,通常对应一个
相关 随机森林与决策树--机器学习
决策树 决策树是机器学习最基本的模型,在不考虑其他复杂情况下,我们可以用一句话来描述决策树:如果得分大于等于60分,那么你及格了。 这是一个最最简单的决策树的模型,我们
相关 机器学习 - 随机森林算法模型
1. 随机森林使用背景 1.1 随机森林定义 随机森林是一种比较新的机器学习模型。经典的机器学习模型是神经网络,有半个多世纪的历史了。神经网络预测精确,但是计算量很大。上世
相关 python机器学习04:决策树与随机森林算法
1.决策树 1.决策树的基本原理: 决策树是一种在分类与回归中都有着非常广泛应用的算法,它的原理是通过一系列问题进行if/else的推导,最终实现决策。 2.决
还没有评论,来说两句吧...