类的构造函数、拷贝构造函数

ゞ 浴缸里的玫瑰 2022-08-06 05:10 377阅读 0赞

长久以来,对类有好多东西都不是很清楚,趁这次机会,干脆把它学好。

一、 构造函数是干什么的
class Counter
{
public:
// 类Counter的构造函数
// 特点:以类名作为函数名,无返回类型
Counter()
{
m_value = 0;
}
private:
// 数据成员
int m_value;
}
该类对象被创建时,编译系统对象分配内存空间,并自动调用该构造函数->由构造函数完成成员的初始化工作

eg: Counter c1;
编译系统为对象c1的每个数据成员(m_value)分配内存空间,并调用构造函数Counter( )自动地初始化对象c1的m_value值设置为0

故:
构造函数的作用:初始化对象的数据成员。
二、 构造函数的种类
class Complex
{
private :
double m_real;
double m_imag;
public:
// 无参数构造函数
// 如果创建一个类你没有写任何构造函数,则系统会自动生成默认的无参构造函数,函数为空,什么都不做
// 只要你写了一个下面的某一种构造函数,系统就不会再自动生成这样一个默认的构造函数,如果希望有一个这样的无参构造函数,则需要自己显示地写出来
Complex(void)
{
m_real = 0.0;
m_imag = 0.0;
}
// 一般构造函数(也称重载构造函数)
// 一般构造函数可以有各种参数形式,一个类可以有多个一般构造函数,前提是参数的个数或者类型不同(基于c++的重载函数原理)
// 例如:你还可以写一个 Complex( int num)的构造函数出来
// 创建对象时根据传入的参数不同调用不同的构造函数
Complex(double real, double imag)
{
m_real = real;
m_imag = imag;
}
// 复制构造函数(也称为拷贝构造函数)
// 复制构造函数参数为类对象本身的引用,用于根据一个已存在的对象复制出一个新的该类的对象,一般在函数中会将已存在对象的数据成员的值复制一份到新创建的对象中
// 若没有显示的写复制构造函数,则系统会默认创建一个复制构造函数,但当类中有指针成员时,由系统默认创建该复制构造函数会存在风险,具体原因请查询 有关 “浅拷贝” 、“深拷贝”的文章论述
Complex(const Complex & c)
{
// 将对象c中的数据成员值复制过来
m_real = c.m_real;
m_img = c.m_img;
}
// 类型转换构造函数,根据一个指定的类型的对象创建一个本类的对象
// 例如:下面将根据一个double类型的对象创建了一个Complex对象
Complex::Complex(double r)
{
m_real = r;
m_imag = 0.0;
}
// 等号运算符重载
// 注意,这个类似复制构造函数,将=右边的本类对象的值复制给等号左边的对象,它不属于构造函数,等号左右两边的对象必须已经被创建
// 若没有显示的写=运算符重载,则系统也会创建一个默认的=运算符重载,只做一些基本的拷贝工作
Complex &operator=( const Complex &rhs )
{
// 首先检测等号右边的是否就是左边的对象本,若是本对象本身,则直接返回
if ( this == &rhs )
{
return *this;
}
// 复制等号右边的成员到左边的对象中
this->m_real = rhs.m_real;
this->m_imag = rhs.m_imag;
// 把等号左边的对象再次传出
// 目的是为了支持连等 eg: a=b=c 系统首先运行 b=c
// 然后运行 a= ( b=c的返回值,这里应该是复制c值后的b对象)
return *this;
}
};
下面使用上面定义的类对象来说明各个构造函数的用法:
void main()
{
// 调用了无参构造函数,数据成员初值被赋为0.0
Complex c1,c2;

  1. // 调用一般构造函数,数据成员初值被赋为指定值
  2. Complex c3(1.0,2.5);
  3. // 也可以使用下面的形式
  4. Complex c3 = Complex(1.0,2.5);
  5. // 把c3的数据成员的值赋值给c1
  6. // 由于c1已经事先被创建,故此处不会调用任何构造函数
  7. // 只会调用 = 号运算符重载函数
  8. c1 = c3;
  9. // 调用类型转换构造函数
  10. // 系统首先调用类型转换构造函数,将5.2创建为一个本类的临时对象,然后调用等号运算符重载,将该临时对象赋值给c1
  11. c2 = 5.2;
  12. // 调用拷贝构造函数( 有下面两种调用方式)
  13. Complex c5(c2);
  14. Complex c4 = c2; // 注意和 = 运算符重载区分,这里等号左边的对象不是事先已经创建,故需要调用拷贝构造函数,参数为c2

}
三、思考与测验

  1. 仔细观察复制构造函数
    1. Complex(const Complex & c)
    2. \{
    3. // 将对象c中的数据成员值复制过来
    4. m\_real = c.m\_real;
    5. m\_img = c.m\_img;
    6. \}
    为什么函数中可以直接访问对象c的私有成员?
  2. 挑战题,了解引用与传值的区别
    Complex test1(const Complex& c)
    {
    1. return c;
    }
    Complex test2(const Complex c)
    {
    1. return c;
    }
    Complex test3()
    {
    1. static Complex c(1.0,5.0);
    2. return c;
    }
    Complex& test4()
    {
    1. static Complex c(1.0,5.0);
    2. return c;
    }
    void main()
    {
    1. Complex a,b;
    2. // 下面函数执行过程中各会调用几次构造函数,调用的是什么构造函数?
    3. test1(a);
    4. test2(a);
    5. b = test3();
    6. b = test4();
    7. test2(1.2);
    8. // 下面这条语句会出错吗?
    9. test1(1.2); //test1( Complex(1.2 )) 呢?
    }

一. 什么是拷贝构造函数

首先对于普通类型的对象来说,它们之间的复制是很简单的,例如:

[c-sharp] view plain copy

  1. int a = 100;
  2. int b = a;

而类对象与普通对象不同,类对象内部结构一般较为复杂,存在各种成员变量。
下面看一个类对象拷贝的简单例子。

[c-sharp] view plain copy

  1. #include
  2. using namespace std;
  3. class CExample {
  4. private:
  5.  int a;
  6. public:
  7. //构造函数
  8.  CExample(int b)
  9.  { a = b;}
  10. //一般函数
  11.  void Show ()
  12.  {
  13. cout<<a<<endl;
  14. }
  15. };
  16. int main()
  17. {
  18.  CExample A(100);
  19.  CExample B = A; //注意这里的对象初始化要调用拷贝构造函数,而非赋值
  20.   B.Show ();
  21.  return 0;
  22. }

运行程序,屏幕输出100。从以上代码的运行结果可以看出,系统为对象 B 分配了内存并完成了与对象 A 的复制过程。就类对象而言,相同类型的类对象是通过拷贝构造函数来完成整个复制过程的。

下面举例说明拷贝构造函数的工作过程。

[c-sharp] view plain copy

  1. #include
  2. using namespace std;
  3. class CExample {
  4. private:
  5. int a;
  6. public:
  7. //构造函数
  8. CExample(int b)
  9. { a = b;}
  10. //拷贝构造函数
  11. CExample(const CExample& C)
  12. {
  13. a = C.a;
  14. }
  15. //一般函数
  16. void Show ()
  17. {
  18. cout<<a<<endl;
  19. }
  20. };
  21. int main()
  22. {
  23. CExample A(100);
  24. CExample B = A; // CExample B(A); 也是一样的
  25. B.Show ();
  26. return 0;
  27. }

CExample(const CExample& C) 就是我们自定义的拷贝构造函数。可见,拷贝构造函数是一种特殊的 构造函数,函数的名称必须和类名称一致,它必须的一个参数是本类型的一个引用变量

二. 拷贝构造函数的调用时机

在C++中,下面三种对象需要调用拷贝构造函数!
1. 对象以值传递的方式传入函数参数

[c-sharp] view plaincopy

  1. class CExample
  2. {
  3. private:
  4. int a;

  5. public:
  6. //构造函数
  7. CExample(int b)
  8. {
  9. a = b;
  10. cout<<”creat: “<<a<<endl;
  11. }

  12. //拷贝构造
  13. CExample(const CExample& C)
  14. {
  15. a = C.a;
  16. cout<<”copy”<<endl;
  17. }

  18. //析构函数
  19. ~CExample()
  20. {
  21. cout<< “delete: “<<a<<endl;
  22. }

  23. void Show ()
  24. {
  25. cout<<a<<endl;
  26. }
  27. };

  28. //全局函数,传入的是对象
  29. void g_Fun(CExample C)
  30. {
  31. cout<<”test”<<endl;
  32. }

  33. int main()
  34. {
  35. CExample test(1);
  36. //传入对象
  37. g_Fun(test);

  38. return 0;
  39. }

调用g_Fun()时,会产生以下几个重要步骤:
(1).test对象传入形参时,会先会产生一个临时变量,就叫 C 吧。
(2).然后调用拷贝构造函数把test的值给C。 整个这两个步骤有点像:CExample C(test);
(3).等g_Fun()执行完后, 析构掉 C 对象。

2. 对象以值传递的方式从函数返回

[c-sharp] view plaincopy

  1. class CExample
  2. {
  3. private:
  4. int a;

  5. public:
  6. //构造函数
  7. CExample(int b)
  8. {
  9. a = b;
  10. }

  11. //拷贝构造
  12. CExample(const CExample& C)
  13. {
  14. a = C.a;
  15. cout<<”copy”<<endl;
  16. }

  17. void Show ()
  18. {
  19. cout<<a<<endl;
  20. }
  21. };

  22. //全局函数
  23. CExample g_Fun()
  24. {
  25. CExample temp(0);
  26. return temp;
  27. }

  28. int main()
  29. {
  30. g_Fun();
  31. return 0;
  32. }

当g_Fun()函数执行到return时,会产生以下几个重要步骤:
(1). 先会产生一个临时变量,就叫XXXX吧。
(2). 然后调用拷贝构造函数把temp的值给XXXX。整个这两个步骤有点像:CExample XXXX(temp);
(3). 在函数执行到最后先析构temp局部变量。
(4). 等g_Fun()执行完后再析构掉XXXX对象。

3. 对象需要通过另外一个对象进行初始化;

[c-sharp] view plaincopy

  1. CExample A(100);
  2. CExample B = A;
  3. // CExample B(A);

后两句都会调用拷贝构造函数。

三. 浅拷贝和深拷贝

1. 默认拷贝构造函数

  1. 很多时候在我们都不知道拷贝构造函数的情况下,传递对象给函数参数或者函数返回对象都能很好的进行,这是因为编译器会给我们自动产生一个拷贝构造函数,这就是“默认拷贝构造函数”,这个构造函数很简单,仅仅使用“老对象”的数据成员的值对“新对象”的数据成员一一进行赋值,它一般具有以下形式:

[c-sharp] view plain copy

  1. Rect::Rect(const Rect& r)
  2. {
  3. width = r.width;
  4. height = r.height;
  5. }
  1. 当然,以上代码不用我们编写,编译器会为我们自动生成。但是如果认为这样就可以解决对象 的复制问题,那就错了,让我们来考虑以下一段代码:

[c-sharp] view plain copy

  1. class Rect
  2. {
  3. public:
  4. Rect() // 构造函数,计数器加1
  5. {
  6. count++;
  7. }
  8. ~Rect() // 析构函数,计数器减1
  9. {
  10. count—;
  11. }
  12. static int getCount() // 返回计数器的值
  13. {
  14. return count;
  15. }
  16. private:
  17. int width;
  18. int height;
  19. static int count; // 一静态成员做为计数器
  20. };
  21. int Rect::count = 0; // 初始化计数器
  22. int main()
  23. {
  24. Rect rect1;
  25. cout<<”The count of Rect: “<<Rect::getCount()<<endl;
  26. Rect rect2(rect1); // 使用rect1复制rect2,此时应该有两个对象
  27. cout<<”The count of Rect: “<<Rect::getCount()<<endl;
  28. return 0;
  29. }

  这段代码对前面的类,加入了一个静态成员,目的是进行计数。在主函数中,首先创建对象rect1,输出此时的对象个数,然后使用rect1复制出对象rect2,再输出此时的对象个数,按照理解,此时应该有两个对象存在,但实际程序运行时,输出的都是1,反应出只有1个对象。此外,在销毁对象时,由于会调用销毁两个对象,类的析构函数会调用两次,此时的计数器将变为负数。

说白了,就是拷贝构造函数没有处理静态数据成员。

出现这些问题最根本就在于在复制对象时,计数器没有递增,我们重新编写拷贝构造函数,如下:

[c-sharp] view plain copy

  1. class Rect
  2. {
  3. public:
  4. Rect() // 构造函数,计数器加1
  5. {
  6. count++;
  7. }
  8. Rect(const Rect& r) // 拷贝构造函数
  9. {
  10. width = r.width;
  11. height = r.height;
  12. count++; // 计数器加1
  13. }
  14. ~Rect() // 析构函数,计数器减1
  15. {
  16. count—;
  17. }
  18. static int getCount() // 返回计数器的值
  19. {
  20. return count;
  21. }
  22. private:
  23. int width;
  24. int height;
  25. static int count; // 一静态成员做为计数器
  26. };

2. 浅拷贝

  1. 所谓浅拷贝,指的是在对象复制时,只对对象中的数据成员进行简单的赋值,默认拷贝构造函数执行的也是浅拷贝。大多情况下“浅拷贝”已经能很好地工作了,但是一旦对象存在了动态成员,那么浅拷贝就会出问题了,让我们考虑如下一段代码:

[c-sharp] view plain copy

  1. class Rect
  2. {
  3. public:
  4. Rect() // 构造函数,p指向堆中分配的一空间
  5. {
  6. p = new int(100);
  7. }
  8. ~Rect() // 析构函数,释放动态分配的空间
  9. {
  10. if(p != NULL)
  11. {
  12. delete p;
  13. }
  14. }
  15. private:
  16. int width;
  17. int height;
  18. int *p; // 一指针成员
  19. };
  20. int main()
  21. {
  22. Rect rect1;
  23. Rect rect2(rect1); // 复制对象
  24. return 0;
  25. }

    在这段代码运行结束之前,会出现一个运行错误。原因就在于在进行对象复制时,对于动态分配的内容没有进行正确的操作。我们来分析一下:

    在运行定义rect1对象后,由于在构造函数中有一个动态分配的语句,因此执行后的内存情况大致如下:

    0_1298440885fFHF.gif

  1. 在使用rect1复制rect2时,由于执行的是浅拷贝,只是将成员的值进行赋值,这时 rect1.p = rect2.p,也即这两个指针指向了堆里的同一个空间,如下图所示:

0_1298440940377T.gif

当然,这不是我们所期望的结果,在销毁对象时,两个对象的析构函数将对同一个内存空间释放两次,这就是错误出现的原因。我们需要的不是两个p有相同的值,而是两个p指向的空间有相同的值,解决办法就是使用“深拷贝”。

3. 深拷贝

  1. 在“深拷贝”的情况下,对于对象中动态成员,就不能仅仅简单地赋值了,而应该重新动态分配空间,如上面的例子就应该按照如下的方式进行处理:

[c-sharp] view plain copy

  1. class Rect
  2. {
  3. public:
  4. Rect() // 构造函数,p指向堆中分配的一空间
  5. {
  6. p = new int(100);
  7. }
  8. Rect(const Rect& r)
  9. {
  10. width = r.width;
  11. height = r.height;
  12. p = new int; // 为新对象重新动态分配空间
  13. *p = *(r.p);
  14. }
  15. ~Rect() // 析构函数,释放动态分配的空间
  16. {
  17. if(p != NULL)
  18. {
  19. delete p;
  20. }
  21. }
  22. private:
  23. int width;
  24. int height;
  25. int *p; // 一指针成员
  26. };

此时,在完成对象的复制后,内存的一个大致情况如下:

0_12984409785Oby.gif

此时rect1的p和rect2的p各自指向一段内存空间,但它们指向的空间具有相同的内容,这就是所谓的“深拷贝”。

3. 防止默认拷贝发生

  1. 通过对对象复制的分析,我们发现对象的复制大多在进行“值传递”时发生,这里有一个小技巧可以防止按值传递——**声明一个私有拷贝构造函数**。甚至不必去定义这个拷贝构造函数,这样因为拷贝构造函数是私有的,如果用户试图按值传递或函数返回该类对象,将得到一个编译错误,从而可以避免按值传递或返回对象。

[c-sharp] view plain copy

  1. // 防止按值传递
  2. class CExample
  3. {
  4. private:
  5. int a;
  6. public:
  7. //构造函数
  8. CExample(int b)
  9. {
  10. a = b;
  11. cout<<”creat: “<<a<<endl;
  12. }
  13. private:
  14. //拷贝构造,只是声明
  15. CExample(const CExample& C);
  16. public:
  17. ~CExample()
  18. {
  19. cout<< “delete: “<<a<<endl;
  20. }
  21. void Show ()
  22. {
  23. cout<<a<<endl;
  24. }
  25. };
  26. //全局函数
  27. void g_Fun(CExample C)
  28. {
  29. cout<<”test”<<endl;
  30. }
  31. int main()
  32. {
  33. CExample test(1);
  34. //g_Fun(test); 按值传递将出错
  35. return 0;
  36. }

四. 拷贝构造函数的几个细节

1. 拷贝构造函数里能调用private成员变量吗?
解答:
这个问题是在网上见的,当时一下子有点晕。其时从名子我们就知道拷贝构造函数其时就是一个特殊的构造函数,操作的还是自己类的成员变量,所以不受private的限制。

2. 以下函数哪个是拷贝构造函数,为什么?

[c-sharp] view plain copy

  1. X::X(const X&);
  2. X::X(X);
  3. X::X(X&, int a=1);
  4. X::X(X&, int a=1, int b=2);

解答:对于一个类X, 如果一个构造函数的第一个参数是下列之一:
a) X&
b) const X&
c) volatile X&
d) const volatile X&
且没有其他参数或其他参数都有默认值,那么这个函数是拷贝构造函数.

[c-sharp] view plain copy

  1. X::X(const X&); //是拷贝构造函数
  2. X::X(X&, int=1); //是拷贝构造函数
  3. X::X(X&, int a=1, int b=2); //当然也是拷贝构造函数

3. 一个类中可以存在多于一个的拷贝构造函数吗?
解答:
类中可以存在超过一个拷贝构造函数。

[c-sharp] view plain copy

  1. class X {
  2. public:
  3. X(const X&); // const 的拷贝构造
  4. X(X&); // 非const的拷贝构造
  5. };

注意,如果一个类中只存在一个参数为 X& 的拷贝构造函数,那么就不能使用const X或volatile X的 对象实行拷贝初始化.

[c-sharp] view plain copy

  1. class X {
  2. public:
  3. X();
  4. X(X&);
  5. };
  6. const X cx;
  7. X x = cx; // error

如果一个类中没有定义拷贝构造函数,那么编译器会自动产生一个默认的拷贝构造函数。
这个默认的参数可能为 X::X(const X&)或 X::X(X&),由编译器根据上下文决定选择哪一个。

发表评论

表情:
评论列表 (有 0 条评论,377人围观)

还没有评论,来说两句吧...

相关阅读

    相关 拷贝构造函数

    特点 也是一种构造函数,其函数名和类名相同,没有返回值类型 只有一个参数,且是同类对象的引用 每个类都必须有一个拷贝构造函数,系统会提供默认构造函数,程

    相关 拷贝构造函数

    一.定义: 就类对象而言,相同类型的类对象是通过拷贝构造函数来完成整个复制过程的。 自定义拷贝构造函数: 1. //拷贝构造函数 2. C

    相关 C++拷贝构造函数

    最近在复习C++的考试,对于上机中出现多的是构造函数\\拷贝构造函数\\虚函数等等接触了很多,对它们的理解逐步的加深. . 什么是拷贝构造函数 首