发表评论取消回复
相关阅读
相关 PCA(主成分分析)算法
因为对PCA算法的好奇,所以就写一篇笔记记录一下自己学习的过程。 文章目录 一、简介 二、代码实现 2.1 实现步骤: 2.
相关 矩阵的特征:主成分分析(PCA)
我们先从主成分分析PCA开始看。在解释这个方法之前,我们先快速回顾一下什么是特征的降维。在机器学习领域中,我们要进行大量的特征工程,将物品的特征转换成计算机所能处理的各种数据。
相关 PCA (主成分分析)详解
PCA (主成分分析)详解 (写给初学者) 结合matlab 一、简介 PCA(Principal Components Analysis)即主成分分析,是
相关 PCA主成分分析
Sklearn中的降维算法 ![在这里插入图片描述][watermark_type_ZHJvaWRzYW5zZmFsbGJhY2s_shadow_50_text_Q1NE
相关 特征脸(Eigenface)理论基础-PCA(主成分分析法)
在之前的博客 [人脸识别经典算法一:特征脸方法(Eigenface)][Eigenface] 里面介绍了特征脸方法的原理,但是并没有对它用到的理论基础PCA做介绍,现在做补
相关 python主成分分析PCA
主成分PCA分析的基本步骤: · 对数据进行归一化处理(代码中并非这么做的,而是直接减去均值) · 计算归一化后的数据集的协方差矩阵 · 计算协方差矩阵的特征值和特征
相关 Python scikit-learn,特征降维,主成分分析,PCA
PCA(Principal Component Analysis)主成分分析是一种分析、简化数据集的技术。 PCA目的:数据维数压缩,尽可能降低原数据的维数(复杂度),损失少
相关 主成分分析PCA
降维的必要性 1.多重共线性--预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。 2.高维空间本身具有稀疏性。一维正态分布有68%的值落
相关 PCA-主成分分析
一、PCA简介 1.背景 > 许多领域的研究与应用中,收集大量数据(提供了丰富的信息)以便进行分析寻找规律,但也在一定程度上增加了数据采集的工作量。更重要的是在多数情况
还没有评论,来说两句吧...