发表评论取消回复
相关阅读
相关 降维算法中的线性判别分析(Linear Discriminant Analysis)
线性判别分析(Linear Discriminant Analysis,LDA)是一种经典的降维算法,最早由英国统计学家雷诺德·费歇尔(Ronald A. Fisher)于19
相关 机器学习降维算法二:LDA(Linear Discriminant Analysis)
额距离上一篇blog已经有很长的时间了,之前一直在忙着做一个工作,最近告一段落,还是要写blog啊!很多基础知识有些遗忘了,也算作是一种复习。我尽量推导的关键的地方写写,建议大
相关 机器学习-PCA降维
PCA(Principal Component Analysis 主成分分析) PCA主要用于非线性数据的降维,需要用到核技巧。因此在使用的时候需要选择合适的核函数并对核函
相关 机器学习笔记 线性判别分析(LDA)(Linear Discriminate Analysis)
上篇博客分析了PCA([https://blog.csdn.net/qq\_38366615/article/details/86663634][https_blog.csdn
相关 机器学习—降维
降维的作用:压缩和可视化 数据压缩(3D–>2D):减少数据从3D到2D ![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpd
相关 机器学习算法08 - 降维学习
降维学习 在概率统计模块,我详细讲解了如何使用各种统计指标来进行特征的选择,降低用于监督式学习的特征之维度。接下来的几节,我会阐述两种针对数值型特征,更为通用的降维方法,
相关 机器学习降维--PCA
1.原理和概念 PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。 PCA的主要思想是将n维特征映射
还没有评论,来说两句吧...