Learning Deep Features for Discriminative Localization

深碍√TFBOYSˉ_ 2022-06-10 12:55 247阅读 0赞

Learning Deep Features for Discriminative Localization论文笔记以及Caffe实现

论文笔记 | Learning Deep Features for Discriminative Localization

论文笔记: Learning Deep Features for Discriminative Localization

可以利用论文的思路对原始以224*224或227*227尺寸图像作为输入的AlexNet或VGGNet使用更高分辨率的图像作为输入,主要是为了利用原来在imagenet上预训练的模型进行finetuning。

https://github.com/hshota0530/caffe\_models

VGG的论文里还有提到用384x384,512x512的网络进行训练,然后再融合模型来提高精度,增加384x384的输入,类似于256x256,网络的输入参数大小为336x336,和256x256一样,随机截取作为输入,第一个卷积层把stride改为3就可以。512x512的网络由于输入图片太大,只做了两次实验,一次是卷积大小依旧7x7,stride改为4,不成功。一次是加入两个5x5,stride为2的卷积层,依旧不行,然后就没再实验。

https://github.com/metalbubble/CAM

https://github.com/jacobgil/keras-cam

https://github.com/slundqui/DeepGAP

https://github.com/markdtw/class-activation-mapping

https://github.com/jacobgil/pytorch-grad-cam

https://github.com/jacobgil/keras-grad-cam

https://github.com/taoyilee/Keras\_MedicalImgAI/blob/master/app/grad\_cam.py

https://github.com/insikk/Grad-CAM-tensorflow

https://github.com/adityac94/Grad\_CAM\_plus\_plus

https://github.com/conan7882/CNN-Visualization

Visualizing and Understanding Convolutional Networks 阅读笔记-网络可视化NO.1

Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

凭什么相信你,我的CNN模型?(篇一:CAM和Grad-CAM)

论文笔记:WILDCAT: Weakly Supervised Learning of Deep ConvNets

Weakly supervised Localization using deep feature maps

论文笔记: Weakly Supervised Semantic Segmentation Using Superpixel Pooling Network

发表评论

表情:
评论列表 (有 0 条评论,247人围观)

还没有评论,来说两句吧...

相关阅读