Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization论文笔记以及Caffe实现
论文笔记 | Learning Deep Features for Discriminative Localization
论文笔记: Learning Deep Features for Discriminative Localization
可以利用论文的思路对原始以224*224或227*227尺寸图像作为输入的AlexNet或VGGNet使用更高分辨率的图像作为输入,主要是为了利用原来在imagenet上预训练的模型进行finetuning。
https://github.com/hshota0530/caffe\_models
VGG的论文里还有提到用384x384,512x512的网络进行训练,然后再融合模型来提高精度,增加384x384的输入,类似于256x256,网络的输入参数大小为336x336,和256x256一样,随机截取作为输入,第一个卷积层把stride改为3就可以。512x512的网络由于输入图片太大,只做了两次实验,一次是卷积大小依旧7x7,stride改为4,不成功。一次是加入两个5x5,stride为2的卷积层,依旧不行,然后就没再实验。
https://github.com/metalbubble/CAM
https://github.com/jacobgil/keras-cam
https://github.com/slundqui/DeepGAP
https://github.com/markdtw/class-activation-mapping
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/keras-grad-cam
https://github.com/taoyilee/Keras\_MedicalImgAI/blob/master/app/grad\_cam.py
https://github.com/insikk/Grad-CAM-tensorflow
https://github.com/adityac94/Grad\_CAM\_plus\_plus
https://github.com/conan7882/CNN-Visualization
Visualizing and Understanding Convolutional Networks 阅读笔记-网络可视化NO.1
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
凭什么相信你,我的CNN模型?(篇一:CAM和Grad-CAM)
论文笔记:WILDCAT: Weakly Supervised Learning of Deep ConvNets
Weakly supervised Localization using deep feature maps
论文笔记: Weakly Supervised Semantic Segmentation Using Superpixel Pooling Network
还没有评论,来说两句吧...