红黑树 ╰+攻爆jí腚メ 2022-06-09 12:48 352阅读 0赞 > 3.3 Balanced Search Trees > [http://algs4.cs.princeton.edu/33balanced/][http_algs4.cs.princeton.edu_33balanced] /****************************************************************************** * Compilation: javac RedBlackBST.java * Execution: java RedBlackBST < input.txt * Dependencies: StdIn.java StdOut.java * Data files: http://algs4.cs.princeton.edu/33balanced/tinyST.txt * * A symbol table implemented using a left-leaning red-black BST. * This is the 2-3 version. * * Note: commented out assertions because DrJava now enables assertions * by default. * * % more tinyST.txt * S E A R C H E X A M P L E * * % java RedBlackBST < tinyST.txt * A 8 * C 4 * E 12 * H 5 * L 11 * M 9 * P 10 * R 3 * S 0 * X 7 * ******************************************************************************/ import java.util.NoSuchElementException; public class RedBlackBST<Key extends Comparable<Key>, Value> { private static final boolean RED = true; private static final boolean BLACK = false; private Node root; // root of the BST // BST helper node data type private class Node { private Key key; // key private Value val; // associated data private Node left, right; // links to left and right subtrees private boolean color; // color of parent link private int size; // subtree count public Node(Key key, Value val, boolean color, int size) { this.key = key; this.val = val; this.color = color; this.size = size; } } /** * Initializes an empty symbol table. */ public RedBlackBST() { } /*************************************************************************** * Node helper methods. ***************************************************************************/ // is node x red; false if x is null ? private boolean isRed(Node x) { if (x == null) return false; return x.color == RED; } // number of node in subtree rooted at x; 0 if x is null private int size(Node x) { if (x == null) return 0; return x.size; } /** * Returns the number of key-value pairs in this symbol table. * @return the number of key-value pairs in this symbol table */ public int size() { return size(root); } /** * Is this symbol table empty? * @return {@code true} if this symbol table is empty and {@code false} otherwise */ public boolean isEmpty() { return root == null; } /*************************************************************************** * Standard BST search. ***************************************************************************/ /** * Returns the value associated with the given key. * @param key the key * @return the value associated with the given key if the key is in the symbol table * and {@code null} if the key is not in the symbol table * @throws IllegalArgumentException if {@code key} is {@code null} */ public Value get(Key key) { if (key == null) throw new IllegalArgumentException("argument to get() is null"); return get(root, key); } // value associated with the given key in subtree rooted at x; null if no such key private Value get(Node x, Key key) { while (x != null) { int cmp = key.compareTo(x.key); if (cmp < 0) x = x.left; else if (cmp > 0) x = x.right; else return x.val; } return null; } /** * Does this symbol table contain the given key? * @param key the key * @return {@code true} if this symbol table contains {@code key} and * {@code false} otherwise * @throws IllegalArgumentException if {@code key} is {@code null} */ public boolean contains(Key key) { return get(key) != null; } /*************************************************************************** * Red-black tree insertion. ***************************************************************************/ /** * Inserts the specified key-value pair into the symbol table, overwriting the old * value with the new value if the symbol table already contains the specified key. * Deletes the specified key (and its associated value) from this symbol table * if the specified value is {@code null}. * * @param key the key * @param val the value * @throws IllegalArgumentException if {@code key} is {@code null} */ public void put(Key key, Value val) { if (key == null) throw new IllegalArgumentException("first argument to put() is null"); if (val == null) { delete(key); return; } root = put(root, key, val); root.color = BLACK; // assert check(); } // insert the key-value pair in the subtree rooted at h private Node put(Node h, Key key, Value val) { if (h == null) return new Node(key, val, RED, 1); int cmp = key.compareTo(h.key); if (cmp < 0) h.left = put(h.left, key, val); else if (cmp > 0) h.right = put(h.right, key, val); else h.val = val; // fix-up any right-leaning links if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); if (isRed(h.left) && isRed(h.right)) flipColors(h); h.size = size(h.left) + size(h.right) + 1; return h; } /*************************************************************************** * Red-black tree deletion. ***************************************************************************/ /** * Removes the smallest key and associated value from the symbol table. * @throws NoSuchElementException if the symbol table is empty */ public void deleteMin() { if (isEmpty()) throw new NoSuchElementException("BST underflow"); // if both children of root are black, set root to red if (!isRed(root.left) && !isRed(root.right)) root.color = RED; root = deleteMin(root); if (!isEmpty()) root.color = BLACK; // assert check(); } // delete the key-value pair with the minimum key rooted at h private Node deleteMin(Node h) { if (h.left == null) return null; if (!isRed(h.left) && !isRed(h.left.left)) h = moveRedLeft(h); h.left = deleteMin(h.left); return balance(h); } /** * Removes the largest key and associated value from the symbol table. * @throws NoSuchElementException if the symbol table is empty */ public void deleteMax() { if (isEmpty()) throw new NoSuchElementException("BST underflow"); // if both children of root are black, set root to red if (!isRed(root.left) && !isRed(root.right)) root.color = RED; root = deleteMax(root); if (!isEmpty()) root.color = BLACK; // assert check(); } // delete the key-value pair with the maximum key rooted at h private Node deleteMax(Node h) { if (isRed(h.left)) h = rotateRight(h); if (h.right == null) return null; if (!isRed(h.right) && !isRed(h.right.left)) h = moveRedRight(h); h.right = deleteMax(h.right); return balance(h); } /** * Removes the specified key and its associated value from this symbol table * (if the key is in this symbol table). * * @param key the key * @throws IllegalArgumentException if {@code key} is {@code null} */ public void delete(Key key) { if (key == null) throw new IllegalArgumentException("argument to delete() is null"); if (!contains(key)) return; // if both children of root are black, set root to red if (!isRed(root.left) && !isRed(root.right)) root.color = RED; root = delete(root, key); if (!isEmpty()) root.color = BLACK; // assert check(); } // delete the key-value pair with the given key rooted at h private Node delete(Node h, Key key) { // assert get(h, key) != null; if (key.compareTo(h.key) < 0) { if (!isRed(h.left) && !isRed(h.left.left)) h = moveRedLeft(h); h.left = delete(h.left, key); } else { if (isRed(h.left)) h = rotateRight(h); if (key.compareTo(h.key) == 0 && (h.right == null)) return null; if (!isRed(h.right) && !isRed(h.right.left)) h = moveRedRight(h); if (key.compareTo(h.key) == 0) { Node x = min(h.right); h.key = x.key; h.val = x.val; // h.val = get(h.right, min(h.right).key); // h.key = min(h.right).key; h.right = deleteMin(h.right); } else h.right = delete(h.right, key); } return balance(h); } /*************************************************************************** * Red-black tree helper functions. ***************************************************************************/ // make a left-leaning link lean to the right private Node rotateRight(Node h) { // assert (h != null) && isRed(h.left); Node x = h.left; h.left = x.right; x.right = h; x.color = x.right.color; x.right.color = RED; x.size = h.size; h.size = size(h.left) + size(h.right) + 1; return x; } // make a right-leaning link lean to the left private Node rotateLeft(Node h) { // assert (h != null) && isRed(h.right); Node x = h.right; h.right = x.left; x.left = h; x.color = x.left.color; x.left.color = RED; x.size = h.size; h.size = size(h.left) + size(h.right) + 1; return x; } // flip the colors of a node and its two children private void flipColors(Node h) { // h must have opposite color of its two children // assert (h != null) && (h.left != null) && (h.right != null); // assert (!isRed(h) && isRed(h.left) && isRed(h.right)) // || (isRed(h) && !isRed(h.left) && !isRed(h.right)); h.color = !h.color; h.left.color = !h.left.color; h.right.color = !h.right.color; } // Assuming that h is red and both h.left and h.left.left // are black, make h.left or one of its children red. private Node moveRedLeft(Node h) { // assert (h != null); // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left); flipColors(h); if (isRed(h.right.left)) { h.right = rotateRight(h.right); h = rotateLeft(h); flipColors(h); } return h; } // Assuming that h is red and both h.right and h.right.left // are black, make h.right or one of its children red. private Node moveRedRight(Node h) { // assert (h != null); // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left); flipColors(h); if (isRed(h.left.left)) { h = rotateRight(h); flipColors(h); } return h; } // restore red-black tree invariant private Node balance(Node h) { // assert (h != null); if (isRed(h.right)) h = rotateLeft(h); if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); if (isRed(h.left) && isRed(h.right)) flipColors(h); h.size = size(h.left) + size(h.right) + 1; return h; } /*************************************************************************** * Utility functions. ***************************************************************************/ /** * Returns the height of the BST (for debugging). * @return the height of the BST (a 1-node tree has height 0) */ public int height() { return height(root); } private int height(Node x) { if (x == null) return -1; return 1 + Math.max(height(x.left), height(x.right)); } /*************************************************************************** * Ordered symbol table methods. ***************************************************************************/ /** * Returns the smallest key in the symbol table. * @return the smallest key in the symbol table * @throws NoSuchElementException if the symbol table is empty */ public Key min() { if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table"); return min(root).key; } // the smallest key in subtree rooted at x; null if no such key private Node min(Node x) { // assert x != null; if (x.left == null) return x; else return min(x.left); } /** * Returns the largest key in the symbol table. * @return the largest key in the symbol table * @throws NoSuchElementException if the symbol table is empty */ public Key max() { if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table"); return max(root).key; } // the largest key in the subtree rooted at x; null if no such key private Node max(Node x) { // assert x != null; if (x.right == null) return x; else return max(x.right); } /** * Returns the largest key in the symbol table less than or equal to {@code key}. * @param key the key * @return the largest key in the symbol table less than or equal to {@code key} * @throws NoSuchElementException if there is no such key * @throws IllegalArgumentException if {@code key} is {@code null} */ public Key floor(Key key) { if (key == null) throw new IllegalArgumentException("argument to floor() is null"); if (isEmpty()) throw new NoSuchElementException("called floor() with empty symbol table"); Node x = floor(root, key); if (x == null) return null; else return x.key; } // the largest key in the subtree rooted at x less than or equal to the given key private Node floor(Node x, Key key) { if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp == 0) return x; if (cmp < 0) return floor(x.left, key); Node t = floor(x.right, key); if (t != null) return t; else return x; } /** * Returns the smallest key in the symbol table greater than or equal to {@code key}. * @param key the key * @return the smallest key in the symbol table greater than or equal to {@code key} * @throws NoSuchElementException if there is no such key * @throws IllegalArgumentException if {@code key} is {@code null} */ public Key ceiling(Key key) { if (key == null) throw new IllegalArgumentException("argument to ceiling() is null"); if (isEmpty()) throw new NoSuchElementException("called ceiling() with empty symbol table"); Node x = ceiling(root, key); if (x == null) return null; else return x.key; } // the smallest key in the subtree rooted at x greater than or equal to the given key private Node ceiling(Node x, Key key) { if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp == 0) return x; if (cmp > 0) return ceiling(x.right, key); Node t = ceiling(x.left, key); if (t != null) return t; else return x; } /** * Return the kth smallest key in the symbol table. * @param k the order statistic * @return the {@code k}th smallest key in the symbol table * @throws IllegalArgumentException unless {@code k} is between 0 and * <em>n</em>–1 */ public Key select(int k) { if (k < 0 || k >= size()) { throw new IllegalArgumentException("called select() with invalid argument: " + k); } Node x = select(root, k); return x.key; } // the key of rank k in the subtree rooted at x private Node select(Node x, int k) { // assert x != null; // assert k >= 0 && k < size(x); int t = size(x.left); if (t > k) return select(x.left, k); else if (t < k) return select(x.right, k-t-1); else return x; } /** * Return the number of keys in the symbol table strictly less than {@code key}. * @param key the key * @return the number of keys in the symbol table strictly less than {@code key} * @throws IllegalArgumentException if {@code key} is {@code null} */ public int rank(Key key) { if (key == null) throw new IllegalArgumentException("argument to rank() is null"); return rank(key, root); } // number of keys less than key in the subtree rooted at x private int rank(Key key, Node x) { if (x == null) return 0; int cmp = key.compareTo(x.key); if (cmp < 0) return rank(key, x.left); else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); else return size(x.left); } /*************************************************************************** * Range count and range search. ***************************************************************************/ /** * Returns all keys in the symbol table as an {@code Iterable}. * To iterate over all of the keys in the symbol table named {@code st}, * use the foreach notation: {@code for (Key key : st.keys())}. * @return all keys in the symbol table as an {@code Iterable} */ public Iterable<Key> keys() { if (isEmpty()) return new Queue<Key>(); return keys(min(), max()); } /** * Returns all keys in the symbol table in the given range, * as an {@code Iterable}. * * @param lo minimum endpoint * @param hi maximum endpoint * @return all keys in the sybol table between {@code lo} * (inclusive) and {@code hi} (inclusive) as an {@code Iterable} * @throws IllegalArgumentException if either {@code lo} or {@code hi} * is {@code null} */ public Iterable<Key> keys(Key lo, Key hi) { if (lo == null) throw new IllegalArgumentException("first argument to keys() is null"); if (hi == null) throw new IllegalArgumentException("second argument to keys() is null"); Queue<Key> queue = new Queue<Key>(); // if (isEmpty() || lo.compareTo(hi) > 0) return queue; keys(root, queue, lo, hi); return queue; } // add the keys between lo and hi in the subtree rooted at x // to the queue private void keys(Node x, Queue<Key> queue, Key lo, Key hi) { if (x == null) return; int cmplo = lo.compareTo(x.key); int cmphi = hi.compareTo(x.key); if (cmplo < 0) keys(x.left, queue, lo, hi); if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key); if (cmphi > 0) keys(x.right, queue, lo, hi); } /** * Returns the number of keys in the symbol table in the given range. * * @param lo minimum endpoint * @param hi maximum endpoint * @return the number of keys in the sybol table between {@code lo} * (inclusive) and {@code hi} (inclusive) * @throws IllegalArgumentException if either {@code lo} or {@code hi} * is {@code null} */ public int size(Key lo, Key hi) { if (lo == null) throw new IllegalArgumentException("first argument to size() is null"); if (hi == null) throw new IllegalArgumentException("second argument to size() is null"); if (lo.compareTo(hi) > 0) return 0; if (contains(hi)) return rank(hi) - rank(lo) + 1; else return rank(hi) - rank(lo); } /*************************************************************************** * Check integrity of red-black tree data structure. ***************************************************************************/ private boolean check() { if (!isBST()) StdOut.println("Not in symmetric order"); if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent"); if (!isRankConsistent()) StdOut.println("Ranks not consistent"); if (!is23()) StdOut.println("Not a 2-3 tree"); if (!isBalanced()) StdOut.println("Not balanced"); return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced(); } // does this binary tree satisfy symmetric order? // Note: this test also ensures that data structure is a binary tree since order is strict private boolean isBST() { return isBST(root, null, null); } // is the tree rooted at x a BST with all keys strictly between min and max // (if min or max is null, treat as empty constraint) // Credit: Bob Dondero's elegant solution private boolean isBST(Node x, Key min, Key max) { if (x == null) return true; if (min != null && x.key.compareTo(min) <= 0) return false; if (max != null && x.key.compareTo(max) >= 0) return false; return isBST(x.left, min, x.key) && isBST(x.right, x.key, max); } // are the size fields correct? private boolean isSizeConsistent() { return isSizeConsistent(root); } private boolean isSizeConsistent(Node x) { if (x == null) return true; if (x.size != size(x.left) + size(x.right) + 1) return false; return isSizeConsistent(x.left) && isSizeConsistent(x.right); } // check that ranks are consistent private boolean isRankConsistent() { for (int i = 0; i < size(); i++) if (i != rank(select(i))) return false; for (Key key : keys()) if (key.compareTo(select(rank(key))) != 0) return false; return true; } // Does the tree have no red right links, and at most one (left) // red links in a row on any path? private boolean is23() { return is23(root); } private boolean is23(Node x) { if (x == null) return true; if (isRed(x.right)) return false; if (x != root && isRed(x) && isRed(x.left)) return false; return is23(x.left) && is23(x.right); } // do all paths from root to leaf have same number of black edges? private boolean isBalanced() { int black = 0; // number of black links on path from root to min Node x = root; while (x != null) { if (!isRed(x)) black++; x = x.left; } return isBalanced(root, black); } // does every path from the root to a leaf have the given number of black links? private boolean isBalanced(Node x, int black) { if (x == null) return black == 0; if (!isRed(x)) black--; return isBalanced(x.left, black) && isBalanced(x.right, black); } /** * Unit tests the {@code RedBlackBST} data type. * * @param args the command-line arguments */ public static void main(String[] args) { RedBlackBST<String, Integer> st = new RedBlackBST<String, Integer>(); for (int i = 0; !StdIn.isEmpty(); i++) { String key = StdIn.readString(); st.put(key, i); } for (String s : st.keys()) StdOut.println(s + " " + st.get(s)); StdOut.println(); } } [http_algs4.cs.princeton.edu_33balanced]: http://algs4.cs.princeton.edu/33balanced/
相关 红黑树 [https://baijiahao.baidu.com/s?id=1641940303518144126&wfr=spider&for=pc][https_baijiahao 水深无声/ 2023年07月12日 03:41/ 0 赞/ 22 阅读
相关 红黑树 红黑树也是一颗平衡二叉树,平衡二叉树参考文章[平衡二叉树][Link 1] 红黑树基本介绍 红黑树是一种自平衡的二叉查找树,是一种高效的查找树。它是由 Rudolf B Love The Way You Lie/ 2023年07月12日 03:39/ 0 赞/ 24 阅读
相关 树:红黑树 1,红黑树引入 红黑树是对AVL树的补充。AVL树要求整个树的高度差不能超过1,超过后需要进行左旋或者右旋操作再次对树进行平衡,虽然这样能够解决二叉树退化为链表的缺 ╰半橙微兮°/ 2023年02月28日 01:25/ 0 赞/ 143 阅读
相关 红黑树 红黑树的定义 每个节点要么是红色,要么是黑色。 根节点必须是黑色, 每个叶子节点是黑色(叶子节点包含NULL)。 红色节点不能连续(红色节点的孩子和父亲 Dear 丶/ 2022年12月13日 04:18/ 0 赞/ 13 阅读
相关 红黑树 红黑树(Red Black Tree) 是一种自平衡二叉查找树,红黑树和AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能,它虽然 谁践踏了优雅/ 2022年06月15日 12:57/ 0 赞/ 484 阅读
相关 红黑树 > 3.3 Balanced Search Trees > [http://algs4.cs.princeton.edu/33balanced/][http_algs4.c ╰+攻爆jí腚メ/ 2022年06月09日 12:48/ 0 赞/ 353 阅读
相关 红黑树 红黑树 概念 红黑树,又被称为对称二叉B树。 [红黑树模型][Link 1] 其本质是一种二叉查找树,单它在二叉查找树的基础上额外添加了一个标记(颜色),同时具 拼搏现实的明天。/ 2022年04月10日 02:39/ 0 赞/ 442 阅读
相关 红黑树 先Mark,后续补充: [https://juejin.im/entry/58371f13a22b9d006882902d][https_juejin.im_entry_58 柔情只为你懂/ 2022年01月30日 14:57/ 0 赞/ 346 阅读
相关 红黑树 二叉查找树(BST) 1.左子树上所有结点的值均小于或等于它的根结点的值。 2.右子树上所有结点的值均大于或等于它的根结点的值。 3.左、右子树也分别为二叉排序树。 下 川长思鸟来/ 2021年10月24日 01:48/ 0 赞/ 395 阅读
相关 红黑树 1. 从 2-3 树说起 一棵标准的 BST (二叉查找树 / 二叉搜索树)是长这个样子的: BST 其中,这棵二叉查找树中的每个结点也叫 2-结点 ,2-结点 就表示树... 系统管理员/ 2020年11月29日 04:30/ 0 赞/ 843 阅读
还没有评论,来说两句吧...