发表评论取消回复
相关阅读
相关 决策树与随机森林
目录 决策树的简介 信息增益 如何构建决策树 如何避免过拟合 剪枝 随机森林 Bagging算法(套袋发) 特征选择 决策树的生成 ----------
相关 理解随机森林
理解随机森林 随机森林利用随机的方式将许多决策树组合成一个森林,每个决策树在分类的时候投票决定测试样本的最终类别。下面我们再详细说一下随机森林是如何构建的。 随机
相关 AdaBoost与随机森林区别
AdaBoost 首先明确一个大方向:强可学习和弱可学习是等价的。所以,弱可学习方法可以提升为强可学习方法。AdaBoost最具代表性。 对于提升方法,有两个问题需要回
相关 随机森林和GBDT的区别
随机森林和GBDT的区别 1. 随机森林采用的bagging思想,而GBDT采用的boosting思想。这两种方法都是Bootstrap思想的应用,Bootstrap是
相关 Bagging(Bootstrap aggregating)、随机森林(random forests)、AdaBoost
引言 在这篇文章中,我会详细地介绍Bagging、随机森林和AdaBoost算法的实现,并比较它们之间的优缺点,并用scikit-learn分别实现了这3种算法来拟合Wi
还没有评论,来说两句吧...