SVM——分类与回归实例

忘是亡心i 2022-06-07 02:26 418阅读 0赞

在线课堂——支持向量机实例学习笔记。

支持向量机简介

支持向量机是一种监督学习数学模型,由n个变量组成的数据项都可以抽象成n维空间内的一个点,点的各个维度坐标值即为各个变量。如果一堆数据项可以分为m个类,那么可以构建m-1个n维超平面将不同种类的数据项的点尽量分隔开,则这些超平面为支持向量面,这个分类数学模型为支持向量机分类模型。

Classification分析——鸢尾花数据集

Scikit-Learn自带鸢尾花数据集,可使用datasets.load_iris()载入。

  • data——每行是某个鸢尾花的花萼长度、花萼宽度、花瓣长度、花瓣宽度。
  • target——第n个数据分别表示data段第n行数据所对应的鸢尾花类别编号(共3类)。

首先,使用交叉验证法进行分析。由于交叉验证法每次选取的测试集是随机的,因此每次运算结果未必相同。下面为鸢尾花数据集的SVM聚类训练的源码,并用交叉验证法进行分析。

  1. from sklearn import datasets
  2. from sklearn.cross_validation import train_test_split
  3. from sklearn.svm import SVC
  4. from numpy import *
  5. # download the dataset
  6. iris_dataset = datasets.load_iris()
  7. iris_data = iris_dataset.data
  8. iris_target = iris_dataset.target
  9. # split data and target into training set and testing set
  10. # 80% training, 20% testing
  11. x_train, x_test, y_train, y_test = train_test_split(iris_data, iris_target, test_size = 0.2)
  12. # construct SVC by using rbf as kernel function
  13. SVC_0 = SVC(kernel = 'rbf')
  14. SVC_0.fit(x_train, y_train)
  15. predict = SVC_0.predict(x_test)
  16. right = sum(predict == y_test)
  17. # accuracy rate
  18. print("%f%%" % (right * 100.0 / predict.shape[0]))

以下源码是使用留一验证法(Leave-One-Out,LOO)对鸢尾花数据集进行分析。

  1. from sklearn import datasets
  2. from sklearn.cross_validation import train_test_split
  3. from sklearn.svm import SVC
  4. from numpy import *
  5. def data_svc_test(data, target, index):
  6. x_train = vstack((data[0: index], data[index + 1: -1]))
  7. x_test = data[index]
  8. y_train = hstack((target[0: index], target[index + 1: -1]))
  9. y_test = target[index]
  10. SVC_0 = SVC(kernel = 'rbf')
  11. SVC_0.fit(x_train, y_train)
  12. predict = SVC_0.predict(x_test)
  13. return predict == y_test
  14. # download the dataset
  15. iris_dataset = datasets.load_iris()
  16. iris_data = iris_dataset.data
  17. iris_target = iris_dataset.target
  18. length = iris_target.shape[0]
  19. right = 0
  20. for i in range(0, length):
  21. right += data_svc_test(iris_data, iris_target, i)
  22. # accuracy rate
  23. print("%f%%" % (right * 100.0 / length))

Regression分析——波士顿房价数据集

Scikit-learn自带波士顿房价集,该数据集来源于1978年美国某经济学杂志上,可由datasets.load_boston()载入。该数据集包含若干波士顿房屋的价格及其各项数据,每个数据项包含14个数据,分别是房屋均价及周边犯罪率、是否在河边等相关信息,其中最后一个数据是房屋均价。
这里涉及到了一个数据预处理的步骤——为了便于后续训练,需要对读取到的数据进行处理。因为影响房价的数据的范围都不一致,这些数据都不在一个数量级上,如果直接使用未经预处理的数据进行训练,很容易导致数值大的数据对结果影响极大,从而不能平衡的体现出各个数据的重要性。因此需要通过数学方法,依据方差、平均值等因素,把各类数据放缩到一个相同的范围内,使其影响力所占权重相近。

  1. from sklearn import datasets
  2. from sklearn.cross_validation import train_test_split
  3. from sklearn.svm import SVR
  4. # preprocessing function
  5. from sklearn.preprocessing import StandardScaler
  6. from numpy import *
  7. house_dataset = datasets.load_boston()
  8. house_data = house_dataset.data
  9. house_price = house_dataset.target
  10. x_train, x_test, y_train, y_test = train_test_split(house_data, house_price, test_size = 0.2)
  11. # f(x) = (x - means) / standard deviation
  12. scaler = StandardScaler()
  13. scaler.fit(x_train)
  14. # standardization
  15. x_train = scaler.transform(x_train)
  16. x_test = scaler.transform(x_test)
  17. # construct SVR model
  18. svr = SVR(kernel = 'rbf')
  19. svr.fit(x_train, y_train)
  20. y_predict = svr.predict(x_test)
  21. result = hstack((y_test.reshape(-1, 1), y_predict.reshape(-1, 1)))
  22. print(result)

最后预测结果呈2列显示,第1列为实际房价,第2列为预测房价,此处略

作者:一枚圆滚滚的鸡蛋
链接:http://www.jianshu.com/p/84015743be01
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

发表评论

表情:
评论列表 (有 0 条评论,418人围观)

还没有评论,来说两句吧...

相关阅读

    相关 SVM——分类回归实例

    [在线课堂][Link 1]——支持向量机实例学习笔记。 支持向量机简介 支持向量机是一种监督学习数学模型,由n个变量组成的数据项都可以抽象成n维空间内的一个点,点的各