决策树-特征选择

Myth丶恋晨 2022-05-30 01:05 292阅读 0赞

发表评论

表情:
评论列表 (有 0 条评论,292人围观)

还没有评论,来说两句吧...

相关阅读

    相关 决策-特征选择

    决策树的特征选择标准有两种:信息增益,信息增益比 0.熵 指不稳定程度。熵越大,不稳定程度越高,则越容易分裂。决策树中也指某结点内含信息量较多,分类能力较差. 计算公式:

    相关 决策

    决策树是基于树结构来进行决策,这恰是人类在面临决策问题时一种很自然的处理机制。例如,我们要对“这是好瓜吗?”这样的问题进行决策时,通常会进行一系列的判断或“子决策”:我们先看“

    相关 决策

    一、 决策树简介 决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件。如图所示,决策树从根节点开始延伸,经过不

    相关 特征选择_过滤特征选择

    一:方差选择法: 使用方差作为特征评分标准,如果某个特征的取值差异不大,通常认为该特征对区分样本的贡献度不大 因此在构造特征过程中去掉方差小于阈值特征 f

    相关 决策

    1 认识决策树     如何高效的进行决策?     特征的先后顺序(哪个特征先看,哪个特征后看) 2 决策树分类原理详解(看哪个特征能筛掉更多的数据,尽可能通过少

    相关 决策

    决策树 声明 本文是来自网络文档和书本(周老师)的结合。 概述 决策树(Decision Tree)是在已知各种情况发生概率的[基础][Link 1]上,通

    相关 决策

    决策树对实例进行分类的树形结构,由节点和有向边组成。其实很像平时画的流程图。 学习决策树之前要搞懂几个概念: 熵:表示随机变量不确定性的度量,定义:H(p)=-![1409