python机器学习实现K-近邻算法(KNN)

喜欢ヅ旅行 2022-05-19 13:18 306阅读 0赞

机器学习 K-近邻算法(KNN)

关注公众号“轻松学编程”了解更多。

以下命令都是在浏览器中输入。

cmd命令窗口输入:jupyter notebook

后打开浏览器输入网址http://localhost:8888/

导引

如何进行电影分类

众所周知,电影可以按照题材分类,然而题材本身是如何定义的?由谁来判定某部电影属于哪 个题材?也就是说同一题材的电影具有哪些公共特征?这些都是在进行电影分类时必须要考虑的问 题。没有哪个电影人会说自己制作的电影和以前的某部电影类似,但我们确实知道每部电影在风格 上的确有可能会和同题材的电影相近。那么动作片具有哪些共有特征,使得动作片之间非常类似, 而与爱情片存在着明显的差别呢?动作片中也会存在接吻镜头,爱情片中也会存在打斗场景,我们 不能单纯依靠是否存在打斗或者亲吻来判断影片的类型。但是爱情片中的亲吻镜头更多,动作片中 的打斗场景也更频繁,基于此类场景在某部电影中出现的次数可以用来进行电影分类。

一个机器学习算法:K-近邻算法,它非常有效而且易于掌握。

一、k-近邻算法原理

简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类。

  • 优点:精度高、对异常值不敏感、无数据输入假定。
  • 缺点:时间复杂度高、空间复杂度高。
  • 适用数据范围:数值型和标称型。

工作原理

存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据

发表评论

表情:
评论列表 (有 0 条评论,306人围观)

还没有评论,来说两句吧...

相关阅读

    相关 [机器学习] k-近邻算法(knn)

    最近在参加大数据的暑期培训,记录一下学习的东西。   引言   懒惰学习法:简单的存储数据,并且一直等待,直到给定一个检验数据,才进行范化,以便根据与存储的训练元组的相似