java集合之 ArrayList
通过本文你将了解到 ArrayList 的如下信息
目录
ArrayList 简介
ArrayList源码分析
重要成员变量
底层数据结构:数组
默认初始容量:10
当前元素个数
重要方法
add(E e): 添加一个元素
grow(int minCapacity):扩容
batchRemove(Collection c, boolean complement):保留或者删除 c 集合中所包含的元素
set(int index, E element):修改指定位置的元素
get(int index) :查找指定位置的元素
遍历
总结
ArrayList 简介
ArrayList 是一个可存储包括 null 值的任意类型数据、支持动态扩容、有序(输入顺序与输出顺序一致)、查找效率高(时间复杂度O(1))的一个集合。
ArrayList源码分析
重要成员变量
底层数据结构:数组
//存储元素
transient Object[] elementData; // non-private to simplify nested class access
transient表示不允许被序列化
默认初始容量:10
private static final int DEFAULT_CAPACITY = 10;
当前元素个数
private int size;
重要方法
add(E e): 添加一个元素
public boolean add(E e) {
//确保有足够的容量
ensureCapacityInternal(size + 1); // Increments modCount!!
//在 size 下标处添加一个元素
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
//当前所需要的最小容量大于等于 10
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// 当前存储空间(数组容量)不够了
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
简单描述:空间是否足够存储—->如果不够就进行扩容—->存储数据到 size 处
grow(int minCapacity):扩容
在没有达到边界值的情况下,扩容后的数组容量 = 旧数组容量+旧数组容量/2
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
batchRemove(Collection<?> c, boolean complement):保留或者删除 c 集合中所包含的元素
根据 complement 来决定是保留还是移除指定集合中存在的元素
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
//complement为true:保留 elementData 和 c 中都存在的元素(相当于求交集)
//complement为false:保留只存在于 elementaData 中,但是不存在于c中的元素
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
set(int index, E element):修改指定位置的元素
public E set(int index, E element) {
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
get(int index) :查找指定位置的元素
public E get(int index) {
rangeCheck(index);
return elementData(index);
}
遍历
ArrayList 内部实现了两种迭代器(Itr、ListItr)来遍历元素。本质都是根据数组下标来操作的
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
/**
* An optimized version of AbstractList.ListItr
*/
private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
总结
上面通过增删改查四个具有代表性的方法分析了ArrayList 源码,ArrayList中的其它方法其实也是类似的,所以没有罗列出来。想要表达的中心思想是:ArrayList 底层数据结构是采用的是数组,所以对于查询会很快(直接根据数组下标),删除会比较满(会涉及到元素的移动)。对于数组的遍历,建议直接使用 for 循环,根据数组下标直接获取。
还没有评论,来说两句吧...