发表评论取消回复
相关阅读
相关 Spark的RDD持久化
Spark的RDD持久化 对于一个RDD的执行流程,从读取文件到一些处理的过程如图所示 ![在这里插入图片描述][watermark_type_ZHJvaWRzYW5
相关 Spark之RDD持久化大全
什么是持久化? 持久化的意思就是说将RDD的数据缓存到内存中或者持久化到磁盘上,只需要缓存一次,后面对这个RDD做任何计算或者操作,可以直接从缓存中或者磁盘上获得,可以大
相关 Spark共享变量
默认情况下,如果在一个算子函数中使用到了某个外部的变量,那么这个变量的值会被拷贝到每个task中。此时每个task只能操作自己的那份变量副本。如果多个task想要共享某个变量,
相关 Spark 共享变量
Spark中有两种类型的共享变量:一个是累加器accumulator、一个是广播变量broadcast variable。 > 累加器:用来对信息进行聚合 > 广播变量:
相关 Spark RDD 持久化
Spark RDD 持久化 注:该文档针对Spark2.1.0版本 Spark最重要的一个功能是它可以通过各种操作(operations)持久化(或者缓存)一个集合到内
相关 RDD持久化原理与共享变量
RDD 持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD 持久化在内存中,当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partiti
相关 Spark 持久化(缓存)
Spark 持久化(缓存) 如前所述,Spark RDD 是惰性求值的,而有时我们希望能多次使用同一个RDD。如果简单地对RDD 调用行动操作,Spark 每次都会重算
相关 Spark 持久化和共享变量
一、Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中。当对RDD执行持久化操作时,每个节点都会将自己操
相关 Spark性能优化——RDD持久化
如果程序中,对某一个RDD,基于它进行了多次transformation或者action操作。那么就非常有必要对其进行持久化操作,以避免对一个RDD反复进行计算。 此外,如果要
相关 Spark特性之共享变量
Spark一个非常重要的特性就是共享变量。默认情况下,如果在一个算子的函数中使用到了某个外部的变量,那么这个变量的值会被拷贝到每个task中。此时每个task只
还没有评论,来说两句吧...