内存管理
概念:
- 物理内存:即内存条的内存空间。
- 虚拟内存:计算机系统内存管理的一种技术。它使得应用程序认为它拥有连续的可用的内存(一个连续完整的地址空间),而实际上,它通常是被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需要时进行数据交换。
为什么会有虚拟内存和物理内存的区别?
如果正在运行的一个进程,它所需的内存是有可能大于内存条容量之和的,如内存条是256M,程序却要创建一个2G的数据区,那么所有数据不可能都加载到内存(物理内存),必然有数据要放到其他介质中(比如硬盘),待进程需要访问那部分数据时,再调度进入物理内存。
什么是虚拟内存地址和物理内存地址?
假设你的计算机是32位,那么它的地址总线是32位的,也就是它可以寻址00xFFFFFFFF(4G)的地址空间,但如果你的计算机只有256M的物理内存0x0x0FFFFFFF(256M),同时你的进程产生了一个不在这256M地址空间中的地址,那么计算机该如何处理呢?回答这个问题前,先说明计算机的内存分页机制。
计算机会对虚拟内存地址空间(32位为4G)进行分页产生页(page),对物理内存地址空间(假设256M)进行分页产生页帧(page frame),页和页帧的大小一样,所以虚拟内存页的个数势必要大于物理内存页帧的个数。在计算机上有一个页表(page table),就是映射虚拟内存页到物理内存页的,更确切的说是页号到页帧号的映射,而且是一对一的映射。
问题来了,虚拟内存页的个数 > 物理内存页帧的个数,岂不是有些虚拟内存页的地址永远没有对应的物理内存地址空间?不是的,操作系统是这样处理的。操作系统有个页面失效(page fault)功能。操作系统找到一个最少使用的页帧,使之失效,并把它写入磁盘,随后把需要访问的页放到页帧中,并修改页表中的映射,保证了所有的页都会被调度。
现在来看看什么是虚拟内存地址和物理内存地址:
虚拟内存地址:由页号(与页表中的页号关联)和偏移量(页的小大,即这个页能存多少数据)组成。
举个例子,有一个虚拟地址它的页号是4,偏移量是20,那么他的寻址过程是这样的:首先到页表中找到页号4对应的页帧号(比如为8),如果页不在内存中,则用失效机制调入页,接着把页帧号和偏移量传给MMC组成一个物理上真正存在的地址,最后就是访问物理内存的数据了。
图例:
性能分析
从代码层面上看,从硬盘上将文件读入内存,都要经过文件系统进行数据拷贝,并且数据拷贝操作是由文件系统和硬件驱动实现的,理论上来说,拷贝数据的效率是一样的。
但是通过内存映射的方法访问硬盘上的文件,效率要比read和write系统调用高,这是为什么?
- read()是系统调用,首先将文件从硬盘拷贝到内核空间的一个缓冲区,再将这些数据拷贝到用户空间,实际上进行了两次数据拷贝;
- map()也是系统调用,但没有进行数据拷贝,当缺页中断发生时,直接将文件从硬盘拷贝到用户空间,只进行了一次数据拷贝。
所以,采用内存映射的读写效率要比传统的read/write性能高。
参考:深入浅出MappedByteBuffer
还没有评论,来说两句吧...