发表评论取消回复
相关阅读
相关 交叉熵损失函数
一、香农熵 香农熵 1948 年,香农提出了“ [信息熵][Link 1]”(shāng) 的概念,才解决了对信息的量化度量问题。 一条
相关 理解交叉熵作为损失函数在神经网络中的作用
交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层
相关 TensorFlow:交叉熵损失函数
基础 损失函数 \[[机器学习中的损失函数][Link 1]\] 示例说明:计算multilabel时的BinaryCrossentropy tf.kera
相关 神经网络经典损失函数-交叉熵和均方误差
在神经网络中,如何判断一个输出向量和期望的向量有多接近呢?交叉熵(cross entropy)是常用的方法之一,刻画了两个概率分布之间的距离,是分类问题中使用较多的一种损失函数
相关 理解交叉熵作为损失函数在神经网络中的作用
交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层
相关 Tensorflow建立深度神经网络时出现nan及交叉熵损失函数的探讨
(作者:陈玓玏) 在使用tensorflow建立深度神经网络的过程中,在几次迭代之后发现所有的权重都变为了nan,导致整个网络都无法正常工作。出现这个问题我知道的可能有以下
相关 神经网络的交叉熵损失函数
常见损失函数 0-1损失函数 L(Y,f(X))=\{ 1,0Y != f(X)Y = f(X) 平方损失函数 L(Y,f(X))=(
相关 Tensorflow笔记:激活函数,损失函数,交叉熵
神经元模型:用数学公式表示为:?(∑????? + ?),f 为激活函数。神经网络是以神经元为基本单 元构成的。 激活函数:引入非线性激活因素,提高模型的表达力。
相关 交叉熵损失函数
1. Cross entropy 交叉熵损失函数用于二分类损失函数的计算,其公式为: ![573274-20190728165253168-15289458.png][]
相关 交叉熵损失函数
> 监督学习的两大种类是分类问题和回归问题。 > > 交叉熵损失函数主要应用于分类问题。 > 先上实现代码,这个函数的功能就是计算labels和logits之间的交叉熵。
还没有评论,来说两句吧...