树莓派上利用Tensorflow实现小车的自动驾驶

分手后的思念是犯贱 2022-01-20 04:23 437阅读 0赞

先抛出大家最关心的——代码地址:

github传送门:github.com/Timthony/se…

基于树莓派的人工智能自动驾驶小车

# 整体流程
电机控制
摄像头调试
道路数据采集
搭建深度学习模型,参数调试
自动驾驶真实道路模拟
参数最终调试

使用方法:

  1. 先将树莓派小车硬件组装好
  2. 使用zth_car_control.py来控制小车的前后左右移动,配合zth_collect_data.py来人工操作,使小车在自己制作的跑道进行数据采集。(该过程在树莓派进行)
  3. 数据采集完成以后使用zth_process_img.py来对采集的数据进行处理,之前当前先完成一些数据清洗的工作。(电脑上执行)
  4. 使用神经网络模型对数据进行训练zth_train.py,得到训练好的模型。(电脑上执行)
  5. 在树莓派小车上使用zth_drive和训练好的模型,载入模型,即可实现在原先跑道的自动驾驶。(树莓派上执行)
    注意:只需要使用上述提到的代码即可,别的都是一些初始版本或者正在增加的一些新模块。

# 注意事项:

  1. 赛道需要自己制作,很重要,决定了数据质量。(我是在地板上,贴的有色胶带,然后贴成了跑道的形状)。
  2. 赛道的宽度大约是车身的两倍。
  3. 大约采集了五六万张图像,然后筛选出三四万张。
  4. 摄像头角度问题

# 具体制作流程:

  1. 小车原始模型,某宝购买玩具车即可,比如:有电机,有自带电池盒(给电机供电)
  2. 树莓派,摄像头,蓄电电池组(用于树莓派供电)
  3. 使用一些螺栓,螺柱,亚克力板将树莓派,蓄电电池固定在小车上(具体方法,看手头的工具吧)
  4. 组装好以后,树莓派通过VNC连接电脑,登陆树莓派,在树莓派安装keras环境,以便最后调用训练好的模型。
  5. 关于小车的控制(电机控制,摄像头采集数据),都在源文件,有注释,大致思路就是通过方向键AWSD来控制方向,使用了pygame的工具包。
  6. 通过电脑端的wasd方向键手动控制小车(已经VNC连接好)在制作好的赛道上进行图像采集,直线部分按w,左拐弯按a,右拐弯按d等,建议采集50000张以上。
    (采集的图像命名要求为,0_xxxx,1_xxxx,其中首位字母就代表了你按下的是哪个键,比如图像是0开头,那么这张图像就是直行,按下的是w键,这些0,1,2,3,4 数字就相当于数据的标签值)
  7. 将图片从树莓派拷贝下来,进行数据清洗,使用电脑端的深度学习环境进行模型训练,使用的模型可以自行定义。
  8. 将训练好的模型文件.h5拷贝到树莓派,然后通过树莓派调用载入模型,即可处理实时的图像,并且根据图像预测出是0,1,2,3,4等数字,也就表示了树莓派该怎么移动,通过树莓派控制电机即可。

# 正在进行一些改进:
1.使用迁移学习进行fine-tuning是否可以提高精度
2.处理光照问题
3.处理数据类别不平衡的问题

欢迎交流讨论

在这里推荐咕泡学院的《人工智能商业实战》,内容有AI深度学习、机器学习、Python、数学、大数据等等,目的是:通过6个月的学习+实战,将学员培养达到具备一年项目经验的人工智能工程师水平。

想了解课程的朋友可以戳戳这里 → 直达

为了帮助大家让学习变得轻松、高效,给大家免费分享一大批资料,让AI越来越普及。在这里给大家推荐一个人工智能Python学习交流群:705673780欢迎大家进群交流讨论,学习交流,共同进步。

当真正开始学习的时候难免不知道从哪入手,导致效率低下影响继续学习的信心。

但最重要的是不知道哪些技术需要重点掌握,学习时频繁踩坑,最终浪费大量时间,所以拥有有效资源还是很有必要的。

发表评论

表情:
评论列表 (有 0 条评论,437人围观)

还没有评论,来说两句吧...

相关阅读

    相关 树莓自动接入校园网

    今年的九月份,我们学校更换了校园网计费系统,将多个网络(校园网、移动宽带、校园内网)整个为统一的登录入口。新的计费方式带来了一些令人不爽的新特性:掌握不到规律的自动断线。 这