余弦相似度计算

冷不防 2021-12-12 23:04 471阅读 0赞

余弦相似度计算

余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫”余弦相似性”。

1129576-20180321205108030-1789394000.png

我们知道,对于两个向量,如果他们之间的夹角越小,那么我们认为这两个向量是越相似的。余弦相似性就是利用了这个理论思想。它通过计算两个向量的夹角的余弦值来衡量向量之间的相似度值。余弦相似性推导公式如下:

1129576-20180321205115621-1073681580.png

1129576-20180321205129923-159703531.png

1129576-20180321205145163-978788649.png

【下面举一个例子,来说明余弦计算文本相似度】

举一个例子来说明,用上述理论计算文本的相似性。为了简单起见,先从句子着手。

句子**A**:这只皮靴号码大了。那只号码合适

句子**B**:这只皮靴号码不小,那只更合适

怎样计算上面两句话的相似程度?

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

第一步,分词

句子**A:这只/皮靴/号码/大了。那只/号码/**合适。

句子**B:这只/皮靴/号码//小,那只//**合适。

第二步,列出所有的词。

这只,皮靴,号码,大了。那只,合适,不,小,很

第三步,计算词频。

句子**A这只1,皮靴1,号码2,大了1。那只1,合适1,不0,小0,更**0

句子**B这只1,皮靴1,号码1,大了0。那只1,合适1,不1,小1,更**1

第四步,写出词频向量。

句子**A(112111000)**

句子**B(111011111)**

到这里,问题就变成了如何计算这两个向量的相似程度。我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, …])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同、线段重合,这是表示两个向量代表的文本完全相等;如果夹角为90度,意味着形成直角,方向完全不相似;如果夹角为180度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

使用上面的公式**(4)**

1129576-20180321205209877-1584135356.png

计算两个句子向量

句子**A(112111000)**

和句子**B(111011111)**的向量余弦值来确定两个句子的相似度。

计算过程如下:

1129576-20180321205220769-861557035.png

计算结果中夹角的余弦值为0.81非常接近于1,所以,上面的句子A和句子B是基本相似的。

发表评论

表情:
评论列表 (有 0 条评论,471人围观)

还没有评论,来说两句吧...

相关阅读

    相关 ES计算余弦相似

    一、前言 最近在项目中做数据推荐的功能,比如,猜你喜欢。主动给用户推荐用户喜欢的商品。如何判断某个商品是不是用户喜欢的呢?在调研过程中,发现es可以做相似度的计算,相似度

    相关 文本相似计算余弦定理

    前言 > 余弦相似度,又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度将向量根据坐标值,绘制到向量空间中。用向量空间中两个向量夹角的余弦值作

    相关 余弦相似计算

    余弦相似度计算 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。