计算两个经纬度点间的距离
计算两个经纬度点间的距离
纬度线投射在图上看似水平的平行线,但实际上是不同半径的圆。有相同特定纬度的所有位置都在同一个纬线上。
赤道的纬度为0°,将行星平分为南半球和北半球。
纬度是指某点与地球球心的连线和地球赤道面所成的线面角,其数值在0至90度之间。位于赤道以北的点的纬度叫北纬,记为N,位于赤道以南的点的纬度称南纬,记为S。
纬度数值在0至30度之间的地区称为低纬地区,纬度数值在30至60度之间的地区称为中纬地区,纬度数值在60至90度之间的地区称为高纬地区。
赤道、南回归线、北回归线、南极圈和北极圈是特殊的纬线。
纬度1秒的长度
地球的子午线总长度大约40008km。平均:
纬度1度 = 大约111km
纬度1分 = 大约1.85km
纬度1秒 = 大约30.9m
The haversine formula
在球上任意两个点的距离有如下关系:
其中,d:两点间距离,既球面距离;
r:球的半径;
:点1和点2的纬度;
:点1和点2的经度;
Java版:
1 import com.google.android.maps.GeoPoint;
2
3 public class DistanceCalculator {
4
5 private double Radius;
6
7 // R = earth's radius (mean radius = 6,371km)
8 // Constructor
9 DistanceCalculator(double R) {
10 Radius = R;
11 }
12
13 public double CalculationByDistance(GeoPoint StartP, GeoPoint EndP) {
14 double lat1 = StartP.getLatitudeE6()/1E6;
15 double lat2 = EndP.getLatitudeE6()/1E6;
16 double lon1 = StartP.getLongitudeE6()/1E6;
17 double lon2 = EndP.getLongitudeE6()/1E6;
18 double dLat = Math.toRadians(lat2-lat1);
19 double dLon = Math.toRadians(lon2-lon1);
20 double a = Math.sin(dLat/2) * Math.sin(dLat/2) +
21 Math.cos(Math.toRadians(lat1)) * Math.cos(Math.toRadians(lat2)) *
22 Math.sin(dLon/2) * Math.sin(dLon/2);
23 double c = 2 * Math.asin(Math.sqrt(a));
24 return Radius * c;
25 }
26 }
C#版:
1 using System;
2 namespace HaversineFormula
3 {
4 /// <summary>
5 /// The distance type to return the results in.
6 /// </summary>
7 public enum DistanceType { Miles, Kilometers };
8 /// <summary>
9 /// Specifies a Latitude / Longitude point.
10 /// </summary>
11 public struct Position
12 {
13 public double Latitude;
14 public double Longitude;
15 }
16 class Haversine
17 {
18 /// <summary>
19 /// Returns the distance in miles or kilometers of any two
20 /// latitude / longitude points.
21 /// </summary>
22 /// <param name=”pos1″></param>
23 /// <param name=”pos2″></param>
24 /// <param name=”type”></param>
25 /// <returns></returns>
26 public double Distance(Position pos1, Position pos2, DistanceType type)
27 {
28 double R = (type == DistanceType.Miles) ? 3960 : 6371;
29 double dLat = this.toRadian(pos2.Latitude - pos1.Latitude);
30 double dLon = this.toRadian(pos2.Longitude - pos1.Longitude);
31 double a = Math.Sin(dLat / 2) * Math.Sin(dLat / 2) +
32 Math.Cos(this.toRadian(pos1.Latitude)) * Math.Cos(this.toRadian(pos2.Latitude)) *
33 Math.Sin(dLon / 2) * Math.Sin(dLon / 2);
34 double c = 2 * Math.Asin(Math.Min(1, Math.Sqrt(a)));
35 double d = R * c;
36 return d;
37 }
38 /// <summary>
39 /// Convert to Radians.
40 /// </summary>
41 /// <param name="val"></param>
42 /// <returns></returns>
43 private double toRadian(double val)
44 {
45 return (Math.PI / 180) * val;
46 }
47 }
48 }
1 Position pos1 = new Position();
2 pos1.Latitude = 40.7486;
3 pos1.Longitude = -73.9864;
4 Position pos2 = new Position();
5 pos2.Latitude = 24.7486;
6 pos2.Longitude = -72.9864;
7 Haversine hv = new Haversine();
8 double result = hv.Distance(pos1, pos2, DistanceType.Kilometers);
JavaScript版:
1 var R = 6371; // km
2 var dLat = (lat2-lat1)*Math.PI/180;
3 var dLon = (lon2-lon1)*Math.PI/180;
4 var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
5 Math.cos(lat1*Math.PI/180) * Math.cos(lat2*Math.PI/180) *
6 Math.sin(dLon/2) * Math.sin(dLon/2);
7 var c = 2 * Math.asin(Math.sqrt(a));
8 var d = R * c;
Python版:
1 #coding:UTF-8
2 """
3 Python implementation of Haversine formula
4 Copyright (C) <2009> Bartek Górny <bartek@gorny.edu.pl>
5
6 This program is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
18 """
19
20 import math
21
22 def recalculate_coordinate(val, _as=None):
23 """
24 Accepts a coordinate as a tuple (degree, minutes, seconds)
25 You can give only one of them (e.g. only minutes as a floating point number) and it will be duly
26 recalculated into degrees, minutes and seconds.
27 Return value can be specified as 'deg', 'min' or 'sec'; default return value is a proper coordinate tuple.
28 """
29 deg, min, sec = val
30 # pass outstanding values from right to left
31 min = (min or 0) + int(sec) / 60
32 sec = sec % 60
33 deg = (deg or 0) + int(min) / 60
34 min = min % 60
35 # pass decimal part from left to right
36 dfrac, dint = math.modf(deg)
37 min = min + dfrac * 60
38 deg = dint
39 mfrac, mint = math.modf(min)
40 sec = sec + mfrac * 60
41 min = mint
42 if _as:
43 sec = sec + min * 60 + deg * 3600
44 if _as == 'sec': return sec
45 if _as == 'min': return sec / 60
46 if _as == 'deg': return sec / 3600
47 return deg, min, sec
48
49
50 def points2distance(start, end):
51 """
52 Calculate distance (in kilometers) between two points given as (long, latt) pairs
53 based on Haversine formula (http://en.wikipedia.org/wiki/Haversine_formula).
54 Implementation inspired by JavaScript implementation from http://www.movable-type.co.uk/scripts/latlong.html
55 Accepts coordinates as tuples (deg, min, sec), but coordinates can be given in any form - e.g.
56 can specify only minutes:
57 (0, 3133.9333, 0)
58 is interpreted as
59 (52.0, 13.0, 55.998000000008687)
60 which, not accidentally, is the lattitude of Warsaw, Poland.
61 """
62 start_long = math.radians(recalculate_coordinate(start[0], 'deg'))
63 start_latt = math.radians(recalculate_coordinate(start[1], 'deg'))
64 end_long = math.radians(recalculate_coordinate(end[0], 'deg'))
65 end_latt = math.radians(recalculate_coordinate(end[1], 'deg'))
66 d_latt = end_latt - start_latt
67 d_long = end_long - start_long
68 a = math.sin(d_latt/2)**2 + math.cos(start_latt) * math.cos(end_latt) * math.sin(d_long/2)**2
69 c = 2 * math.asin(math.sqrt(a))
70 return 6371 * c
71
72
73 if __name__ == '__main__':
74 warsaw = ((21, 0, 30), (52, 13, 56))
75 cracow = ((19, 56, 18), (50, 3, 41))
76 print points2distance(warsaw, cracow)
PHP版:
1 function getDistance($latitude1, $longitude1, $latitude2, $longitude2) {
2 $earth_radius = 6371;
3
4 $dLat = deg2rad($latitude2 - $latitude1);
5 $dLon = deg2rad($longitude2 - $longitude1);
6
7 $a = sin($dLat/2) * sin($dLat/2) + cos(deg2rad($latitude1)) * cos(deg2rad($latitude2)) * sin($dLon/2) * sin($dLon/2);
8 $c = 2 * asin(sqrt($a));
9 $d = $earth_radius * $c;
10
11 return $d;
12 }
参考地址:
http://www.codecodex.com/wiki/Calculate_distance_between_two_points_on_a_globe
http://en.wikipedia.org/wiki/Haversine_formula
转载于//www.cnblogs.com/thinkquan/p/3925199.html
还没有评论,来说两句吧...