发表评论取消回复
相关阅读
相关 机器学习中ROC曲线和AUC评估指标
目录 1.真正例率(TPR )与 假正例率(FPR)定义 2.ROC曲线(接受者操作特性曲线,receiver operating
相关 计算一组分类数据的auc
import matplotlib.pyplot as plt 20个测试样本, 绘制auc class_x = [1, 1, 0, 1,
相关 [Python数据挖掘] sklearn-SVM分类(SVC)
\[引言\] SVM是支持向量机(Support Vector Machine)的简称。 SVM具有分类功能(SVC,C是Classification(分类)的首字母);
相关 笔记︱统计评估指标AUC 详解
文章目录 1 AUC的两种解读视角: 1.1 ROC曲线与坐标轴形成面积 1.2 古典概率模型——求导AUC 2 AUC的特性与优劣
相关 数据挖掘决策树分类算法简介
决策树是以实例为基础的归纳学习算法。它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性
相关 ROC曲线及AUC评价指标
很多时候,我们希望对一个二值分类器的性能进行评价,AUC正是这样一种用来度量分类模型好坏的一个标准。现实中样本在不同类别上的不均衡分布(class distribution
相关 分类器性能指标之ROC曲线、AUC值
转自:http://blog.csdn.net/zdy0\_2004/article/details/44948511 http://blog.csdn.net/zdy
相关 数据挖掘中分类指标AUC
AUC ( Area Under roc Curve )是一种用来度量分类模型好坏的一个标准。 ROC分析是从医疗分析领域引入了一种新的分类模型performance评判方法
相关 数据挖掘系列(5)分类算法评价
一、引言 分类算法有很多,不同分类算法又用很多不同的变种。不同的分类算法有不同的特定,在不同的数据集上表现的效果也不同,我们需要根据特定的任务进行算法的选择,如何选择分类
相关 数据挖掘 - task 3: 各类分类算法
前言 用逻辑回归、svm和决策树;随机森林和XGBoost进行模型构建,评分方式任意,如准确率等。 决策树 import pandas as pd
还没有评论,来说两句吧...