发表评论取消回复
相关阅读
相关 MobileNet V1 V2系列学习笔记
MobileNet 系列详解 MobileNet V1 1.主要贡献 提出了深度可分离卷积结构,大大减小了计算量和模型的大小。 2.深度可分离卷积 标
相关 论文笔记:MobileNet v1
原文:[MobileNets: Efficient Convolutional Neural Networks for MobileVision Applications][M
相关 论文笔记:MobileNet v2
原论文:MobileNetV2: Inverted Residuals and Linear Bottlenecks MobileNet v2 1、四个问题 1.
相关 论文笔记:Inception v1
原文:Going Deeper with Convolutions Inception v1 1、四个问题 1. 要解决什么问题? 提高
相关 论文笔记:ShuffleNet v1
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices Shu
相关 [论文笔记] MobileNet 系列论文笔记
> 随着算力的不断提升,人们所提出的网络模型越发的庞大,但是实际应用中,往往无法提供较强的计算资源。于是网络轻量化又成为了大家关注的热点,而 Google 所提出的 Mobil
相关 轻量级网路--------MobileNet_v1总结
MobileNet\_v1 论文:[MobileNets Efficient Convolutional Neural Networks for
相关 《MobileNets v1: Efficient Convolutional Neural Networks for Mobile Vision Applications》论文笔记
1. 概述 > 导读:这篇文章为移动和嵌入式设备应用提供了一个搞笑的网络模型MobileNets。该网络是使用depthwise分离卷积构建轻量级的神经网络。期间引入了两
相关 《MobileNet v2: Inverted Residuals and Linear Bottlenecks》论文笔记
代码地:[MobileNet v2][] 1. 概述 > 导读:这篇文章提出的网络结构叫做MobileNet v2是在v1的基础上改进得到的,使用了改进的残差网络结构优
相关 《MobileNet v3:Searching for MobileNetV3》论文笔记
1. 概述 > 这篇文章在MobileNet v2的基础上提出了一个新型的轻量级网络结构MobileNet v3。其是用NAS与NetAdapt两个算法搜索出来的。这篇文章
还没有评论,来说两句吧...